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An Adaptive Control Law against Time - Varying Delays in 
Bilateral Teleoperation Systems 
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Abstract- Bilateral teleoperation is a robotic system 
helping humans to work with the remote environment through 
a dual robot which includes a local robot and a remote robot 
operating with considerable time delays. In order to overcome 
this obstacle, beside the proposed wave variables and scattering 
approaches [I], [2], the conventional methods without wave 
variables has been pointed out in [3], [4] with constant time 
delay. In this paper, we propose a new adaptive control law 
based on Lyapunov's direct method to address time varying 
delays and position synchronization between two robots. In 
addition, force control was considered to guarantee tracking 
position error which converges to zero under humans and 
environment disturbances. The validity of them is based on 
theory and the good performance of the proposed controller 
shown in simulation results. 
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I. INTRODUCTION 

The Bilateral Teleoperation system includes two robotic 
manipulators. One is slave robot which is placed in the 
environment to do tasks. The other one is local robot which is 
controlled by human to give orders to slave robot. The 
advantages of this system are that the operator can directly 
observe and control activities of the slave robot, not only that 
the slave robot will also send the necessary information to 
remote help operators giving the timely orders. Besides, this 
system also has some obstacles. The fIrst one is the position 
and velocity tracking. This property is very important, 
because it guaranteed the synchronization between two joints 
of robots, which make the bilateral teleoperation better than 
the other robot-systems. Secondly, because of the distance 
between two robots, there will be communication time-delay 
between local and remote robot which lead to many other 
problems. 

One of the fIrst model of the bilateral teleoperation was 
built in 1940s by Goetz. Until 1990s, M. Spong - Anderson, 
Niemeyer - Siotine [5], [6] , [7] gave an idea about using the 
wave- variable and passive theorem in this system. By using 
the wave-variable, we can simplify the algorithm and it also 
gives us an easier way to handle the stability of the system. 
However, besides the advantages of this method, it still has 
some disadvantages. Firstly, because of the method ' s 
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characteristic, the dynamic model of the system cannot 
include the gravity element. So, it needs another independent 
system to eliminate the gravity element. One another problem 
of this method cannot deal with the time-varying delays. To 
overcome these problems, N. Chopra and M. Spong (2004) 
proposed an adaptive controller for the bilateral teleoperation. 
Four years later, N. Chopra and M. Spong improved their 
method by using a new synchronizing signals. Until 2009, E. 
Nufio and R. Ortega gave an improvement for this method by 
replaced the adaptive law. Despite of these improvement, the 
bilateral teleoperation controller still cannot deal with the 
time-varying delays. 

In this paper, we propose a new adaptive control law 
based on the results ofE. Nufio and R. Ortega [4]. Thus, like 
[4] , our controller has all the known properties such as the 
stability and position tracking. Furthermore, the time-varying 
problem is also implemented by this adaptive controller to 
eliminate assumptions of previous researches. 

II. PRELIMINARIES 

Throughout the article we use the following notation: 1.1 

stand for Euclidean norm and 11.112 stand for ~ norm. 

A. Dynamic model 

The local and remote robots are modeled as a pair of n
Degrees of Freedom (DOF) serial links. Their corresponding 
nonlinear dynamics, together with the human operator and 
environment interaction, are described by 

M,(q.)q. +C,(q.,<t,)<t. +g,(q)=T" -T, 

M , ( q,. ) qr + C, ( qr ' <t, ) <t,. + g, ( qr ) = T, - Te 
(1) 

where qj, <tj ' qj E ~" are the acceleration, velocity and joint 

position, respectively Mi ( qj ) E JR"x/1 are the inertia matrices, 

Ci (qP<ti) E JR"x/1 are the Coriolis and centrifugal effects, 

gi (qj) E JR" are the gravitational forces ; Ti E ~" are the 

control signals; and T" E ~" , Te E ~" are the forces exerted 
by the human operator and the environment interaction. The 
subscript i stand for I or r, which are the local or remote robot 
manipulators, respectively. 

These dynamic models have some important well-known 
properties as following [8] and [9] 

PI. The inertia matrix is lower and upper bounded, i.e., 

0 < Am {Mi }I~ Mi (qj) ~AI11 {Mi}I <00 

P2. The Coriolis matrix and inertia are related as 

Mi (qJ = ~ (qP<ti )+~T (qP<ti) 
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P3. The Coriolis forces are bounded as 

P4. The dynamics are linearly parameterizable. Thus, 

M i (qj )<i; + Ci (qpQ;)Qj + g i (qj) = r;: (qpQp<U~ where 

r;: ( qj ' Qj ,Qj ) E R"x p are matrices of known functions and 

ei E ~n are constant vectors of the manipulator physical 

parameter. 

B. Assumptions and definitions 

We make the following assumptions 

AI. The variable time -- delay, that owing to its nature 
cannot be negative, has a known upper bound TM; i.e., 

0< I; (t) ~ TM; . And the derivative of I; (t) are also 

bounded. 

A2. We assume that the force of human and environment 
can be measured and the measured is bound, i.e., 

Iri -i i I = 1f1 ri I < Ei where i stand for hand e. 

Also, in this paper, we use this defmition 

DI. For any vector v = [VI v2 •.. V ]T where v E ]R" 
11 

and sign(v) E ~" which is defmed as 

C. Lemma 

We propose this lemma for variable time delays (Nufio et 
al. 2008, Lemma 1), its proof can be found in [5] 

Lemma I: For any vector signals x, y any variable time 

delay satisfied A 1 and any constant a > 0 we have that 
1 0 r2 

-2fxT(CT) f Y(CT+e)dedCT~allxll~+~IIYII~ (2) 
o - T(a) a 

III. A NEW ADAPTIVE CONTROLLER 

In this paper, we propose a new adaptive controller. 
Consider the bilateral teleoperation (1), controlled by 

r , = M,~ (qr ) Ae,. + C: (qr ,cir ) Ae,. + g, (qr) -r; +ie (3) 

rl = - MI (ql )..tel -CI (qpql )..tel - g l (ql)+r; +i" 

and for r;:~ =-Mi(q;)Aej -Ci(qpqj)Aej - gi(q;) then (3) 

can be written as 

rl = r;: (qpqpepel)BI + r; + i" 

r , =-J:(qr ,qr ,er ,er)B, -r;.+ie 

Now we defme the synchronizing signals ¢i as 

(A = qj -Aej 
where e j are defmed as: 

(4) 

el =qr(t-I;.(t))-qper =ql(t-I;(t))-qr and Aisa 

positive real scalar. 

From (1) and (3), using (4) we have 

M I ( q. ) ~ + CI ( qp Q. ) tA = r;: 01 - r; + f1 r " 

M , (qr )¢,. + C, (qr ,Qr )¢, = J:e,. -r;. -f1re 
(5) 

The dynamics of the estimations of the uncertain parameters 
are given by 

~=~~~ W 
where I , are the positive defmite matrices. The torque r; 
are: 

r; =K¢l +Bq. +sign(¢I)E" 

r; = K¢, + Bqr + sign (¢,. )Ee 
(7) 

where K is the positive defmite matrix and B is diagonal 
positive defmite matrix. 

Theorem I: Consider the bilateral teleoperator (1) 
controller by (3) using adaptive law (6) and coordinating 
torques (7) together with (4). Then, for variable time--delay 
satisfy AI, all the signals in the system are bounded and 
position errors converge to zero. 
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Using the Lemma 1 we will prove the Theorem 1 

Proof Let us propose a Lyapunov candidate function V as 

(8) 

This function is positive defmite and radically unbounded in 

¢i' B" e j • Its time derivative along (5) - (7) using P2 is given 

by: 

v =-2: [KI¢J +Blqjn 
IE{/.I} 

+ ABq~ [q,. (t -T,. (t ))-q.] 
+ABq~ [q. (t-T. (t))-qr ]+¢r f1r" _¢,T f1re 

-¢r sign(¢1 )&" _¢,T sign(¢, )&e 
On the other hand, as [10] we have 

o 

V = -2: [KI¢J +Blqjn - ABq~ f q,. (t+S)dS 
'E{/ .I} - 7;.(1) 

o 

- ABq~ f q. (t+S)dS +¢r f1r" _¢,T f1re 
- 1/ (1) 

-¢r sign(¢1 )&11 _¢,T sign(¢, )&e 

(9) 

(10) 
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q,. 

Slave 
,..--_____ 1 Robot 1+------, 

T,. 

1----L----6(II+----l A 

Figure 1. System diagram 

Using Lemma 1 and the fact that consider that el E ~ , and the same manner, er E ~. Thus 

¢; and T; are bounded. We also have e; are bounded (l (sign(¢1 )c" -!!,.'" );;:::0 

¢,T (sign(¢,. )ce +!!,.'e);;:::O 
(11) because (L 1; (t) are all bounded. 

which shown that the integral of (11) is also positive, we 
consider: 

1 

-f ¢; (sign(¢1 )c" -!!,.'" )d8 
o 

Take 

If there are exists y; > 0, then 

V(O) ;;::: L [ KlltAll~ + y; Ilq;II ~ J 
IE{",!) 

Thus {qpqr} E~. We can easily see that, with the constants 

a ; > 0 , we can always choose a proper A; satisfy YI > 0 . 

This fact together with the Property PI , implies that 
V (t) :s; V (0) , thus (8) is bounded. Hence, 

{cipcir,q, -qr} E Loo 

Rewriting e 1 as 

el =q .. (t-T(t))-q, =q .. (t-T(t))-q .. +q •. -ql 

Notice that {ql-q •. } E~ and q •. -q .. (t-I;.(t))= 
T, (I) 

f qr (t-8)d8:S;I;2 1Iqrll~ (using Schwartz's inequality). This 
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Next, we will prove that all the signal in system are 
converge to zero. Rewrite (1) with the controller (3) 

ql = M 1- ' (ql)[ MI (ql )Ael + C1 (qpql )Ael 

-T; +!!,.'" -C1(qpql )ql] 

qr =M,~' (qr)[ M,.(qr)Aer +C,. (qr ,qr)Aer 

-T;. -!!,. 'e - C,. ( qr ' qr ) q ,. ] 

(12) 

Because of {ep e pT dl } E Loo together with Properties PI 

and P3, we conclude that q l E Loo . Hence, Barbalat's lemma 

guarantees that q; ~ 0 as t ~ 'Xl because q; E ( " 

q; E~ n(" 

To point out the position tracking of system, we prove 
that q; ~ 0 when q; ~ 0 . After differentiating (11) we will 

have two types of term: the fIrst one contains (:t )M;-I (qi) 

times a bounded signal. The other one contains M I- ' (q;) 

times the derivative of the term in bracket. From the fIrst 

term, we have: ~M~' =-M~'MM~' = 
dt ' ", 

-M-' (c +CT)M-I which is clearly bounded because of 
I I I I' 

Properties PI and P3. The derivative of the term in bracket in 
(10), is bounded because it is a sum of bounded elements. 

Corollary, (~Iq; E £00 thus q. are uniformly continuous. 
dt) • 

Using Barbalat's lemma, we conclude that q; ~ O. Thus 

Iimlq,-qr(t-I;(t))I=o 
1-->00 

This completes the proof. _ 

IV. SIMULA nON 

The local and remote manipulators are modeled as a pair 
of 2-DOF serial links with joints. Their corresponding non-
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linear dynamics follow revolute (1). The elements of the 
inertia matrices M (q.) are described as follows: M = 

f I ' II 

'-'rr"- - -i 

Mill =Mi12 ,Mi22 =/~m2; ; The element of the Coriolis and 

centrifugal matrices C (q. ,q' . ) are C = -II 12 s, q' 2 m_ , 
1 I I I II i i - j i ""'2; • 

CI· = -/112. S2. (42+ 41. ) m2., CI· = /112. S2 41 m2. , CI· = 0 ; 
12 I I I I I I 11 I I I I I 12 

The element of the gravity forces gi ( qj) are gill = gil; CI; ~; 

+g (II; cl; + 12; C12; )m2;, gi21 =g(ll;cl; + 12; C12; )m2; . Where Cp 

SI,CI2 are stand for cos(ql; ) ,sin(ql; ) ' cos (ql; +ql; )' The 

parametrization for both local and remote robot are described 
as follows 

where 

-IIJ2; (41; +42; )S2; )+ g(ll;cl; +12;cI2; ) and 1;2; = ;u\ (!I~ + 

l~ +IIJ2;c2; )+Ae2JIJ2;41;S2; + g/2; C I 2; . Then we have the 

estimated parameters ()i are 

The lengths for each link of the manipulator are II = O.3m, 
I 

121 = O.2m, II , = 0.4m,l2, = 0.3m. The masses for each link 

correspond to ~, = 4kg, m21 = 0.5kg, ~, 6kg, ~, = 0.6kg . 

The initial conditions are qr (0) = [0.4 0.2 t ' 
it, (0) = it, (0) =O;q, (0) = [0.8 0.7Y-

For this simulation with the controller (3) the parameters 
used are: A = 0.4, K = 10 and B = 0.1. The time delay is 

fluctuated between 0-0.5s. 

The human force is generalized as follows 

'. 

Figure 2. Human forces 

The result of the simulation is described as follows 

r=:::l 
~-
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:~ 
§ 'J" 

'~.-~-~~-~-~-~~~-~-~-~-~--J. ... ," 
Figure 3. Parameter estimation of the local and remote manipulators 

Figure 4. Joint position of the local and remote manipulators 

It can be seen from the figures (4) that the errors between 
local and remote robots are converge to zero but the over 
shoot are not small as expected. When humans apply force, 
the local robot move as the consequent and the remote robot 
moves follow. 

V. CONCLUSION 

In this paper, we have proposed a new adaptive controller 
for the bilateral teleoperation systems. This controller can be 
seen as an extension of previous result ofE. Nufio, R. Ortega 
and L. Basafiez (2010). This controller assures that, with the 
bounded varying time-delays, all the signals are bounded, 
position error and velocity error converge to zero. The 
simulations performed confirm the conclusions. 
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