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An Approach Robust Nonlinear Model Predictive Control with 
State-dependent Disturbances via Linear Matrix Inequalities 

Nguyen Thanh Binh, Nguyen Anh Tung, Dao Phuong Nam, Cao Thanh Trung 

Abstract-The issue of nonlinear model predictive control 
has always been a topic of much concern. We will propose a 
new approach to robust nonlinear model predictive control to 
class of nonlinear model system with input constraint under 
state-dependent disturbances. The considered class of model is 
separated into linear part at current state, nonlinear part and 
state-dependent disturbances which are assumed to have their 
bound. The state-feedback control law is obtained by that 
solving optimization problem of upper bound of infinite 
horizon cost function with input constraint via LMIs. In this 
paper, in order to guarantee robust stability, the proposed 
approach must generates feasible regions which ensures the 
existence of a solution and stable region bounded by that. 
Moreover, these regions are able to contract after every 
sampling time to proof the robust stability of the system. The 
simulation results demonstrate the good performance of the 
proposed approach to RNMPC. 

Keywords - Linear Matrix Inequalities, Robust Nonlinear 
Model Predictive Control, Feasibility Region. 

I. INTRODUCTION 

Model predictive control is a method possessing some 
advantages in design of control normal and low dynamic 
systems. The cost function showing performance of system 
will be optimized to compute a sequence of optimal control 
inputs from current to future state, but only the first value 
input is applied to control the system and the rest of that is 
eliminated, thus this work will be iterated at each sampling 
time. Moreover, MPC can analyze some constraint of the 
system such as state, input and output which cause some 
drawbacks for several other control approaches. It is clear 
that the input constraint is important in control design 
because it relates to the real system. 

In the 1970s, MPC was presented the first time to control 
the linear system and still is researched today. Some authors 
such as Rawlings [1], Allowger [2,3], Mayne [1,3] and 
Siotine have researched and progressed MPC for the 
nonlinear model system with new theories like nominal 
model, tube and quasi-infmite horizon from the 1990s. In the 
21 tit century, researchers have improved MPC to become 
robust MPC for nonlinear system with additive uncertainties 
and state-dependent disturbances. Rawlings, Mayne [1] have 
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applied the tube, nominal model and contraction theory, 
Min-Max theory was proposed by Raimondo to control the 
nonlinear model. The theories and techniques LMIs 
presented by Boyd [4] was employed by Kothare [5] to 
become MPC for the linear system. In recent years, the 
techniques LMIs have conducted more researches to analyze 
MPC for the nonlinear system like what Wu, Djia and 
Bigdeli [7] have done. 

In this paper, we propose a new approach to robust model 
predictive control to class of nonlinear system under state­
dependent disturbances. To our limited knowledge, there is 
few papers researching into robust nonlinear model predictive 
control. The considered class of model is separated into linear 
part at current state, model mismatch and state-dependent 
disturbance which are assumed to have their bound. Firstly, 
the proposed optimization problem is quadratic function, 
upper bound of infmite horizon cost function and solved by 
technique LMIs - Boyd [4] with input constraint. In order to 
guarantee robust stability, the optimization problem generates 
feasible regions which ensures the existence of a solution and 
stable region bounded by that. The state-feedback control law 
is obtained by that solving optimization problem of upper 
bound of infmite horizon cost function via LMIs. This control 
law is able to contract upper bound to zero, thus it is clear that 
cost function is also direct to zero and state, input convert to 
origin, in that the proposed approach ensures robust stability. 
We will apply the proposed theory to the three-dimension 
Inverted Pendulum which includes a trolley moving in 
horizon plane and connecting load via insignificant mass hard 
bar and assumption of that wind impact on the load from three 
directions. The objective is that the load is balanced and the 
trolley moves from any position to origin. Considered system 
is underactuated, in that two inputs will control four states 
with their interaction. Therefore, it can be extended to many 
nonlinear models under state-dependent disturbances. 

II. PROPOSED APPROACH 

Continuous System under state dependent disturbance: 

dx -=/ (x,u)+hc(x)d 
dt c 

(1) 

Where x(t) E R" is state vector, u(t) E Rm is input vector. 

fc (e, e) is nonlinear and continuous differentiable function, 

fc(O,O).g(e) is nonlinear and continuous function, 

g(O) = 0 . d (t) E Rq is unmeasured external disturbance. 

Assumption J: The external disturbances are in Loo - space 

(2) 
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Using forward difference Euler approximation to 
discretize the system (1), we have a predictive model: 

Theorem 1: (Robust Condition) 

Considering x( k) = x( k I k) which is measured state at 

x( k+ 1) = x( k)+ T;,.fc (x,u) + T,hc (x)d 

x(k+l) = f(x,u )+L1 

(3) sampling time k. ~,Fk ' Hk, £ are together solution of 
(4) matrix inequalities (14-18): 

The considered state space model will be separated into 
linear part which is linearized at each measured time, 
mismatch model and state-dependent disturbances 

x(k +l l k) = Ax(k I k)+Bu(k)+ J +L1 (5) 

Wh I· . . A Of l B Of l ere meanzatlOn: = - , = - , 
ax x(k ).II (k -l) au x(k ),II(k-l) 

mismatch term: J = f(x(k) ,u(k))- Ax(k)- Bu(k), 

disturbance term: L1 = h(x(k I k))d (k I k) 
We can assume that: 

11L111 :s; rllxll given r > 0 

IIJII ~ ollx II given 0 > 0 

(6) 

(7) 

Remark 1: L1&J in condition (6,7) are the results of 
disturbances, mismatch multiplied with sampling time, so 
sampling time respectively, so sampling time may be selected 
to satisfy condition (6,7). Both conditions are necessary to 
generate feasible regions to guarantee a solution in Theorem 1. 

In this paper, the symbol II-II is the Euclid norm. 

Infinite horizon quadratic cost function : 

00 

J(k) = ~)x(k +i I k)T Qx(k+i I k)+ 
;=0 (8) 

u(k+i I k)T Ru(k+i I k)] 

The considered input constraint 

(9) 

Where x(k+i I k), u(k+i I k): predicted state and control 

action in step k , Q = QT > 0, R = RT > 0 

Proposed state feedback control law at step k : 

u(k +i I k) = Fk x(k +i I k) 

Proposed Lyapunov function: 

V(k I k) = x(k I k)T ~ x(k I k) 

(10) 

(11) 

Lyapunov function is chosen to satisfy the robust 
condition in [5]: 

V(k + i + 11 k) - V(k + i l k) ~ 
(12) 

- x(k +i I kf Qx(k +i I k) -u(k+i I k)T Ru(k+i I k) 

Summing (12) from i = O-+i = 00 

J(k) ~ x(k I k)T ~ x(k I k) = V(k I k) (13) 

Upper bound of cost function (8) is V(k lk) (11). We 

minimize upper bound of cost function (8) under robust 
condition (12) by using a problem ofLMIs. 

419 

~ =~T '?O,Hk =H{ '?O,£'?O (14) 

£[2(Y+O)+(y2 +o2 )JI~Hk (15) 

~ -&!:s; ° (16) 

(A + BF;, f ~ (A+BF;, )+Q+Ft RF;, +Hk - ~ ~O (17) 

IIFkXl1 ~ Umax (18) 

Then, robust condition (12) is true under control law (10) 
with Lyapunov function (11). 

Proof 
Substitute (6) into (12): 

[ Ax(k +i I k)+Bu(k+i I k)+ J +L1 J x~ 
x[ Ax(k+i I k)+Bu(k+i I k)+ J +L1 ] 

-(k+ i lk)T ~x(k+i l k) 

~ - x(k+i I kf Qx(k+i I k)-u(k+i I k)T Ru(k+i I k) 

Substitute control law (10) into (19): 

[(A+BFk )x(k+i lk)+J+L1T x~ 

x [ ( A + BFk ) x( k + i lk) + J + L1 ] 

-x(k+i I k)T ~ x(k+i I k) 

+x(k+i I k)T (Q+FkT RFk )x(k+i I k) ~ 0 

Chose matrix Hk = H{ '? 0: 

2((A+BFk )x(k+i lk)r ~ (1+L1) 

+(J +L1f ~ (J+L1)~xTHk X 

Then inequality (20) is equivalent to: 

x(k+i lkn(A+BFk r ~ (A+BFk ) 

+Q+Ft RFk +Hk -~ ]x(k+i l k)~O 

We evaluate inequality (20): 

2((A+BFk )xf ~ (1 +L1)+(1 + L1f ~ (1 +L1) 

(19) 

(20) 

(21) 

(22) 

~ 2XT II( A +BFk r ~ 11(Y +5)x+xT Amax (~ )(y2 +5 2)x (23) 

T [ II(A+BFk r ~II 2 2 J 
=x Amax (~) 2 (p.) (y+5)+(y +5 ) x 

Amax k 

II(A+BFk )T ~112 ~11(A +BFk f ~o5 In~05 11 

= II (A + BFk )T ~ (A + BFk )IIAmax (~ ) 
(24) 
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From (22) 

(A+BFk )T ~ (A+BFk ) <:;.~ 

=> II(A + BE;, )T ~ (A + BE;, )11 <:;. Amax (~ ) 

Substituting (25) into (24): 

(25) 
(36) 

If 1k, Ek , Lk , & are the together solution of (31), then 

Fk = LkTk-I,Hk =E;I,Ik =Tk- I ,& = '7-1 will satisfy 

(26) Theorem 1 and upper bound of (11) is x( k)T Tk- I x( k) . 

From (22), (23) and (24) we have robust condition under 
matrix inequalities (15),(16) and (17). Inequality (18) is 
input constraint (9). • 

Lemma 1: (Invariant set) 
Let ~ ,Fk from Theorem 1. The system (5) under 

control u(k+i lk)=FkX(k+i lk)Vi;:::O at each step k.Let 

C={XER"l xT~X<:;.x(k l kf ~x(k l k)=a} , 
x(k+i I k) E CVi;::: O. If state value is in C , the all next 

step state values are still in C . 

Proof 
Because ~ , Fk satisfy Theorem 1, the robust cond ition 

(12) is considered: 

x( k + i + 11 k l ~ x( k + i + 11 k) 

< x(k+i I kl ~ x(k+i I k) 

Vi ~ O,x(k+i I k) *- 0 

=> x(k+i I k)T ~ x(k+i I k) <x(k I k)T ~x(k I k) =a 

V i ~ 1, x( k I k) *- 0 
=>x(k+i l k)T ~x(k +i l k) <x(k l k)T ~x(k l k) =a 

Vi ~ l,x(k I k) *- 0 
=>x(k+i lk)EC Vi~O 

Theorem 2: (Minimization of upper bound) 
The optimization problem: 

Subject to 

Tk 

Min X(k)T Tk- 1X(k) 
Tk, Lk,'! ,Ek 

Tk =T[ ;:::O;Ek =E[ ;:::0;'7;:::0 

Ek [2(Y + 5) + (y2 + 52) J <:;'171 

Tk ~ 171 

(ATk +BLk f T/ k LT k 
(ATk +BLk ) Tk 0 0 

T/ k 
0 

(27) 

(28) 

(29) 

(30) 

• 

(31) 

(32) 

(33) 

(34) 

Tk 0 Q- I 0 0 ~ 0 (35) 

Lk 0 0 R- 1 0 

Tk 0 0 0 Ek 
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Proof 
7' D - I L 17 D - I E H -1 - I Set .l k =Ik , k =.l'kIk , k = k ,'7=& 

(34) <=> 11-1 ~ &-11 <=> Pk - &1 <:;. 0 <=> (16) (37) 

(33) <=> HI.' [2( y +5)+(y2 +52 )J <:;. & - 11 <=> (15) (38) 

(35) <=> -(ATk +BLdT Tk- I (ATk +BLd- T[ QTk 
(39) 

-LrRLk -T[ EkITk +Tk ~O 

<=> ( A~-I + BE;, ~-I r ~ (A~-I + BE;, ~-I ) + ~-I Q~-I 
(40) 

+(E;,~-Ir R(Fk~-I)+ ~-IE;I~-I-~-I~~-1 <:;'0<=>(17) 
2 

(36) <=> urna; 171 -17-ILILk ~ 0 => Ilxll ~ 17-2 LILk <:;. U!,J 
IIxl12 (41) 

=> Il xl l ~ FkT Fk <:;. U!aJ => (18) 

• 
Remark 2: All conditions in Theorem 2 are linear matrix 

inequalities or Schur's complement, so it can be solved by 
Boyd [4]. Parameter y,5 may be changed after each 

sampling time to increase convert pace of problem. The 
Y ALMIP tool will be apply to find a solution of Theorem 2. 

Lemma 2: (Feasibility) 
The optimal problem in Theorem 1 is solved at each time 

k to receive feasible region which will contains all 
subsequent optimal solution at time t > k. Therefore, if 
constrained region exist and is sought at time k , the next 
region will be achieved at time t > k , the existence of next 
optimal solution. 

Proof 
It can be assumed that we receive feedback matrix 

control from optimal problem at initial state. The state at 
time k is bounded by feasible region 

It can be seen that the solution at time k still satisfy 
robust condition and feasible region of time k + 1, thus it 
points out Lyapunov function of measured state following 
as: 

V(k +l lk+1)=x(k+l lk+1f Pk+1x(k+l lk +1) 

<:;. V ( k I k) = x (k I k f Pkx (k I k) 
(43) 

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on April 07,2024 at 07:12:38 UTC from IEEE Xplore.  Restrictions apply. 



2017 International Conference on System Science and Engineering (ICSSE) 

It is clear that the measured state at time k + 1 will also 
be in feasible region. 

V(k+l l k+l):O;x(k l k)T sx(k l k) (44) 

If the feedback matrix control is feasible at time k and 
initial state, it also exist at time k + 1. Thus all next state 
k+2 , k+3 .. . will also fmd a solution of optimal problem. 

• 
Theorem 3: (Robust stability) 
The system (5) under linear feedback control law (10) 

obtain from Theorem 2 is robustly asymptotically stable at 
origin. 

Proof 

We note that (Pk ,Fk ),(l1+"F,c+') is solution obtained in 

Theorem 2 at step k, k + 1 and assume that the optimization 
problem in Theorem 2 is feasible at k = O. Follow Lemma 2, 

(11 ,Fk ) is existed for all k:::O: 1 and Pk is feasible at k+ 1. 

We have: 

x(k+l l k+l/ ~+,x(k+l l k+l) 

<x(k+l l k+ll~x(k+l l k+l) Vk:::O:O 

From Lemma 1: 

(45) 

x(k+l l kf ~ x(k+l l k) < x(k l k)T ~ x(k I k) Vk:::O:O (46) 

Because 

x(k+ 11 k+ I) = f( x(k I k),u(k I k))+ g(x(k I k) )d(k I k) 

and Lemma 1 is true Vk;::: 0, Vd(k I k), from above 

inequalities we have: 

x(k I k/ ~ x(k I k) > x(k +l l k+I)T ~ x(k+l l k+l) 

Vk:::O: O,x(k I k) * 0 
(47) 

Thus Lyapunov function V(k I k) = x(k I kf ~ x(k I k) is 

strictly decrease. In addition, from (13), 
V(k I k) > x(k I k)T Qx(k I k) Vx(k I k) * 0, we conclude that 

x(k) ~ 0 as k -H/J. • 
III. SIMULA nON 

In this chapter, the proposed method is verified by 
controlling three dimensional inverted pendulwn which 
includes a trolley moving in horizontal plane and connecting 
load via a lightweight hard bar. Regarding the external 
disturbances, it is assumed that wind impacts load from three 
dimensions Ox,qy and Oz and wind satisfies the assumption 

in the previous chapter. Two control inputs u, and uy impact 

the trolley following Ox,qy to bring system to its stable state 

at origin. 

The Parameters of the three - dimensional inverted 
pendulwn is investigated are mass of trolley m, = 5( kg) , 

mass of load m, = 1 ( kg ), length of connecting bar I = I( m) , 
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gravitational accelerator g = 9.8(m / S2) and sampling time 

T, = O.1(s). The initial states of system are X'mlley = - 0.2(m) , 

Yl10lley = - 0.2( m) , (jJx = 0.2(rad) , (jJy = 0.3(rad), 

X//,Olley =O(mls), Y'/,Olley =O(m ls) , (Px =O(radls) and 

(Py = O(rad Is) . The winds impacting on load are described 

as random function with amplitude being 0.1(N) 
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Fig 1. Model of 3 D -Inverted Pendulum 
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Fig 4. Control input impacts on trolley follow Ox 
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Fig 5. Control input impacts on trolley follow qy 
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Fig 6. External Disturbances impact on load follow three dimensions 

The simulation of 3D-IP investigated by a proposed 
approach show controller need about 6 seconds to reach its 
stable state under continuous state-dependent disturbances. 
The simulation results confirm the good performance of the 
proposed approach of linear matrix inequalities to robust 
nonlinear model predictive control. 

IV. CONCLUSION 

In this paper, the authors propose a new approach to 
model predictive control to analyze the nonlinear system 
under state - dependent disturbances which have been a 
much concerned topic. The considered nonlinear model state 
space is separated into linear terms to generate linear matrix 
inequalities, can be solved via LMIs theory - Boyd [4]. The 
complicated problem of nonlinear optimization is simplified 
to become linear optimization and linear matrix constraints. 
Only when this optimal problem can be solved, its solution 
has good performance which leads nonlinear system to its 
asymptotic stability. 
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