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Abstract— Balancing the power supply and demand is one
of the most fundamental and important problems for the
operation and control of any electric power grid. There are
multiple ways to guarantee the supply-demand balance, but
in this research we focus on one specific method to facilitate
it namely the prediction of electricity consumption, which is
widely used by utility companies or system operators. It is
known that this prediction is challenging because of many
reasons, for example, inexact weather forecasts, uncertain
consumers’ behaviors, etc. Hence, analytical and linear models
of electricity consumption might not be able to deal with such
issues well. This paper therefore presents a machine learning-
based approach to predict electricity consumption, in which an
improved radial basis function neural network (iRBF–NN) is
proposed, whose inputs are time sampling points, temperature,
and humidity associated with the consumption. The parameters
of this iRBF–NN are sought by solving an optimization problem
where four types of cost functions are used and compared on
their performances and computational costs. Afterward, the
derived model is employed to predict the future electricity
consumption based on the hourly forecasts of temperature
and humidity. Finally, simulation results for realistic data in
Tokyo are presented to illustrate the efficiency of the proposed
approach.

I. INTRODUCTION

Energy plays an important role in many aspects of our
daily lives where most of devices use electricity to operate
and assist us to complete our works and enjoy our lives better.
The lack of electricity causes severe problems to the society
and economy, especially in peak hours. Hence, the prediction
of electricity demand is an essential problem which is not
only necessary for power utility companies but also for smart
homes to schedule the power generation and consumption.
For big cities with extremely large population such as Tokyo,
electricity demand is huge. This will, undoubtedly, makes
the problems of demand prediction and power scheduling
more crucial. Additionally, new players in the electricity
markets including renewable energy sources and distributed
generation such as electric vehicles, energy storage systems,
leads to new challenges for electricity demand prediction. All
of the factors mentioned above contribute to the increasing
interest on electricity demand forecast in recent years.

Basically, electricity consumption can be classified into
two major types namely short-term (hourly, three hourly,
one day, few days, and a week) and long-term (monthly,
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and yearly) in [1]. The former is able to support the elec-
tricity manufacturer to plan for electricity generation and
distribution appropriately. The latter is used to calculate
the material input such as water, coal, and nuclear, for
generators, or to install photovoltaic cell and wind turbine
in case of renewable energy. In this research, we focus on
the former type of electricity demand prediction, i.e., short-
term prediction.

To predict the electric consumption, historical data on
the past consumption, temperature, humidity, gross domestic
product (GDP), population, types of households and their
correlation coefficients, and user behaviors are often utilized.
The behavior projection is known to use the data of people’s
habits in using electrical devices (which is not related with
the environmental conditions and the weather) for prediction
[2]. In contrast, the physical prediction is related with the
weather and environmental conditions such as the season,
amount of rain, temperature, humidity, and solar radiation.
The work [3] applied ZABES (Zone Air Building Energy
Simulation), which includes a building envelope model, ex-
ternal loads, and internal loads, to calculate building energy
demand by solving the energy and mass balance equations
of the zone air. In [4], a grey model was considered to de-
scribe and analyze the energy consumption in buildings with
incomplete or uncertain data. The electricity consumption in
buildings is also investigated by Artificial Neural Networks
(ANNs) because there is a difference in patterns between
buildings [5].

The study in [6] investigated the monthly average temper-
ature and monthly electric consumption from April 2013 to
September 2014 in 1100 households in Japan, and applied the
Fourier transform (time series) to predict the future electricity
consumption. Another time series method called the Gaus-
sian process was also applied to predict the future electricity
consumption. Two methods should be used to forecast the
aggregated consumption based on the collected consumption
in both short and long periods because individuals tend to
use electricity unstably. Moreover, these methods are able
to characterize data based on time and magnitude to make
similar groups. The Gaussian process can indicate clearly
changes in small intervals while the Fourier transform causes
a large error. The authors in [7] used the support vector
regression and fuzzy based on PSO algorithm to predict
the short-term demand in South Korea. ANN was employed
to predict both the aggregated and individual electricity
consumption in [8] because this method can analyze highly
nonlinear systems. However, the input-output relationship
was not shown clearly to obtain groups from given data.
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Although fuzzy logic can illustrate the relationship between
input and output, this method also cannot separate historical
data into small groups. Both approaches need a large number
of data to train their networks to adjust parameters and cannot
extrapolate the future electricity consumption. The research
in [9] used a two-layer perceptron neural network to predict
the electricity consumption with six inputs including the
population, GDP per capita, inflation percentage, unemploy-
ment percentage, and winter/summer average temperature.
To improve the accuracy of this method, the author also
forecasts the future population. The authors in [10] proposed
an electricity consumption regression model based on the
linear combination of the GDP and the population or the
GDP per capita.

It is also worth noting that most of the existing works only
consider the temperature to predict the electricity consump-
tion, while ignoring the humidity. However, the humidity
is in fact an important factor affecting to the electricity
consumption because human comfort is dependent on both
temperature and humidity. Several standards have been made
upon the indoor comfort zones, e.g., that by the American
Society of Heating, Refrigerating and Air-Conditioning En-
gineers (ASHRAE) [11]. These standards have been used
and further investigated in many studies, e.g., [12], [13].
Several models and methods to control the thermal comfort,
for instance, ANNs, autoregressive variants, fuzzy control,
and hybrid models was reviewed in [14].

In this paper, we aim at proposing an approach for
predicting the day-ahead and intra-day hourly electricity
consumption. Temperature, humidity, and the vector of time
indexes are used as three inputs to an improved radial
basis function neural network (iRBF–NN) [15] to predict the
future electricity demand. In addition, several different cost
functions are investigated in this iRBF–NN. The reason to
use iRBF–NN is that the relationship between the electricity
consumption and weather conditions including temperature
and humidity is nonlinear, therefore linear models may not
accurately predict the future consumption. We then introduce
a method to derive a prediction interval or envelope with the
percentage of prediction. In reality, this prediction interval
is important because the electricity consumption is uncertain
and one cannot exactly predict the future consumption.

The following notations and symbols will be used in the
paper. The notation x[i], j denotes the variable x for the j-th
input in the i-th layer of the iRBF–NN. Then X[i], j(k) is the
k-th element of a vector x[i], j, and X(i,k) denotes the (i,k)-
th element of a matrix X . Next, R stands for the set of real
numbers, while 1n is used for the vector having n elements
equal to one. Last, |•| stands for the absolute operator.

II. MODEL DESCRIPTION OF IRBF–NN

In this section, we first explain why temperature and
humidity are chosen as two of three inputs in our model.
Table I shows the correlation of distinct weather parameters
to the electricity consumption using the past data on realistic
consumption in Tokyo [16], [17], where the closer to 1
the absolute value of the correlation is, the more related

to the electricity consumption the associated parameter will
be. It can be seen that temperature and humidity have the
highest correlation to the electricity consumption. Note that
the sunshine duration has a reasonably high relative score
but its data are usually hard to collect. Also, other factors
like population, average consumption, etc., could affect to
the electric consumption, however we do not consider here
for simplicity of the model.

TABLE I
CORRELATION BETWEEN WEATHER PARAMETERS AND ELECTRIC

CONSUMPTION FROM 25/9/2018 TO 25/10/2018 IN TOKYO.

Parameters Correlation value
temperature 0.53

relative humidity −0.43
precipitation 0.1

sunshine duration 0.37
wind speed 0.2

Fig. 1. Description of the iRBF–NN.

Next, the iRBF–NN model used in this research is pre-
sented, which composes of two layers. The first layer com-
poses of m neurons whose outputs are fed to a nonlinear
Gaussian function while the second layer is a pure linear
function with bias.

The input vector to the iRBF–NN includes p[1],1, p[1],2, and
p[1],3, in which p[1],1 is the vector of time indexes (hours),
p[1],2 is the historical temperature (oC), and p[1],3 is the
historical humidity (%). The dimensions of the variables are
as follows. The inputs p[1], j ∈ RN for j = 1,2,3, and the
output matrix of the first layer A[1], j ∈ Rm×N , where N is
the number of hours at which the historical data is collected.
w[1], j ∈ Rm and b[1], j ∈ Rm are the weight and bias vector;
respectively. Consequently, P[2] ∈ R3m×N is the input matrix
to the second layer. The output vector and the target vector
of historical electricity consumption are denoted by y ∈ RN

[10 MWh] and t ∈ RN [10 MWh]. Finally, w[2] ∈ R3m and
b[2] ∈ R are the weight vector and the bias in the second
layer.

A[1], j(i,k) =
∣∣p[1], j(k)−w[1], j(i)

∣∣b[1], j(i) (1)

A[1] =
[
AT
[1],1,A

T
[1],2,A

T
[1],1

]T
(2)

P[2] = radbas(A[1]) (3)

y = PT
[2]w[2]+b[2]1N (4)
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Using this model and the historical data on electricity con-
sumption, temperature, and humidity, the model parameters
are trained so that y → t, i.e., the estimated model for
the existing data is derived. Finally, the obtained model
parameters in the estimated model are used to predict the
future electricity consumption based on the forecast of hourly
temperature and hourly humidity.

III. DATA FITTING METHODS
Originally, the iRBF–NN utilizes the L2 cost function, i.e.,

the least-square method to find the model parameters to fit
the model output y to the existing data t. However, in this
research we attempt to employ several different cost func-
tions to verify their effectiveness on the prediction accuracy.
Particularly, the following cost functions are considered:

J1 =
N

∑
k=1
|y(k)− t(k)| (5)

J2 =
N

∑
k=1

[y(k)− t(k)]2 = (y− t)T (y− t) (6)

=
(

PT
[2]w[2]+b[2]1N− t

)T (
PT
[2]w[2]+b[2]1N− t

)
J3 =

N

∑
k=1

{
[y(k)− t(k)]2 +β |y(k)− t(k)|

}
(7)

Hereafter, we denote the cost functions (5), (6), and (7) by
L1, L2, and L1&L2; respectively. The parameter β can be
selected to compromise between the performance and the
computational cost. Denote

x ,
[

w[2]
b[2]

]
, U ,

[
P[2]
1T

N

]
(8)

Then (6) can be rewritten as

J2 =
(
UT x− t

)T (
UT x− t

)
(9)

of which the optimal solution is

x∗ =
(
UUT +ρI

)−1
Ut (10)

The small term ρ > 0 is added to (10) because UUT may not
be invertible. This optimal solution gives us all parameters
of the second layer while the parameters of the first layer in
the iRBF–NN are fixed a priori.

The L1 cost function (5) is also studied here because it is
known to be more robust to outliers than the L2 cost function
[18, Chapter 6], which is important to the estimation and
prediction problems because of the possible inaccuracies on
the temperature and humidity forecast. In order to find the
optimal solutions of (5) and (7), one method is to utilize the
optimal solution of (10) to solve them iteratively. To do so,
rewrite (5) as follows,

J1 =
N

∑
k=1

1
|y(k)− t(k)|

[y(k)− t(k)]2 (11)

At the l-th iteration (l > 1), we set

J1 (l) =
N

∑
k=1

1
|yl (k)− t(k)|

[yl (k)− t(k)]2 (12)

where yl(k) is k-th element of vector y at the l-th iteration.
Given a tolerance ε > 0, this iterative algorithm is stopped,
i.e., yl → y∗ , argmin J1, if

‖yl− yl−1‖2 ≤ ε (13)

Next, (12) can be approximated as follows,

J1 (l) =
N

∑
k=1

1
|θl−1(k)− t(k)|

[yl(k)− t(k)]2 (14)

where θ1 = 1N and l runs from 2. The parameter
θl−1(k) in (14) can be yl−1(k) or the average of yl−1(k),
yl−2(k),. . . ,y2(k). We call the latter choice the L∗1 cost
function. Denote

αl(k),
1

|θl−1(k)− t(k)|
,Λl , diag(αl(1),αl(2), ...,αl(N))

(15)

Substituting αl(k) and Λl into (14) gives us

J1 (l) = (yl− t)T
Λl (yl− t) (16)

The optimal solution of (16), similar to (10), is

x∗l =
(
UΛlUT +ρI

)−1
UΛlt (17)

On the other hand, if the L1&L2 cost function (7) is used to
estimate the iRBF–NN parameters, then the optimal solution
can be derived in a similar manner as above to be

x∗l =
[
U (I +βΛl)UT +ρI

]−1
U (I +βΛl) t (18)

Subsequently, the following steps are presented to summa-
rize the iterative process for solving the L1, L∗1, and L1&L2
methods.
• Step 1: Set l = 1 and select the tolerance ε . Then set

yl = 1N .
• Step 2: Set l = l + 1. Calculate Λl from (15) and find

x∗l from (17) or (18).
• Step 3: Find vector w[2] and b[2] from (8).
• Step 4: Compute θl .
• Step 5: Examine (13). If true, going to step 6, otherwise

go back to step 2.
• Step 6: Obtain the optimal solution yl(k).
After the parameters of the second layer is found, the

predicted consumption ypre can be obtained by putting the
prediction input ppre. The Mean Absolute Percentage Error
(MAPE) coefficient (19) is selected to evaluate the error
between the real data and the estimated value or the predicted
value.

MAPE =
100%

N

N

∑
k=1

∣∣∣∣ t(k)− y(k)
t(k)

∣∣∣∣ (19)

Next, because the weather forecast including that for
temperature and humidity is not precise and there are uncer-
tainties on end-user behaviors, the prediction of electricity
consumption in reality is often required in form of a predic-
tion interval. Therefore, we introduce in the following two
methods to generate an envelope of the predicted electricity
consumption for a given probability of exactness. In the first
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method, the upper bound and lower bound of this envelope
can be calculated as follows:

yup = ypre + zα
σ (20)

ylow = ypre− zα
σ (21)

where zα and σ are 100α percentile of a normal deviation
and the standard deviation of the past electricity consump-
tion; respectively, for example z0.8 = 1.282. During working
days, usually the electricity consumption largely varies where
the consumed energy in the late evening and early morning
(from 10 pm to 7 am) is far less than that in the the other
hours. Therefore, the standard deviation σ can be calculated
to generate the envelope of the prediction interval at each
hour in a day.

In the second method, the envelope of the predicted elec-
tricity consumption is generated by the well-known bootstrap
method [19]. A fixed number of days in the historical data
will be randomly picked up to derive the parameters of
the iRBF–NN model, and then the obtained model will
be utilized to predict the electricity demand in the future.
This process is repeated many times to generate the set of
predicted demand curves, i.e., an estimation of the prediction
interval. Afterward, the mean of those demand curves is set
to be the predicted electricity demand, while the maximum
and minimum of 90% of this set will create the boundaries
of the predicted envelope for the electricity demand.

IV. TEST CASES

The historical temperature, humidity and hourly electricity
consumption data in Tokyo are collected on working days
during the period between 25 September and 25 October
2018 [16], [17]. Because of the limited data, the number of
neurons is selected to be m = 100. Lastly, ρ = 10−4, ε = 0.1.

The parameters of the second layer in the RBF–ANN is
found by minimizing the cost functions (5), (6), and (7)
with collected data of weather and electricity consumption.
Consequently, the electricity on 26 October 2018 will be
predicted based on the day-ahead weather forecast, i.e., on
25 October, and the intra-day weather forecast at 0 am of 26
October. The day-ahead prediction is useful for the power
scheduling of utility companies, while the intra-day forecast
is useful to adjust the power scheduling better.

Fig. 2. Temperature in Tokyo on 26 October 2018.

Figures 2–3 display the realistic weather data, and their
day-ahead and intra-day forecasts used in the simulations.

Fig. 3. Humidity in Tokyo on 26 October 2018.

We can easily observe that the accuracy of the temperature
and humidity forecasts are low.

A. Performance Comparison of Four Cost Functions

The comparisons for estimation and prediction using four
cost functions are shown in Table II and are visualized in
Figure 4. It can be seen that there are no big differences
on the estimation errors of different cost functions, but the
prediction error of the L1 and L∗1 cost functions are smaller
than that of the others. This is understandable because the L1
programming is known to be more robust to outliers, in this
case is the impreciseness of the weather forecasts, than the
L2 programming. Nevertheless, there is a trade-off between
the performance and the computation cost since the L1 and
L∗1 cost functions induce much longer computational times.

TABLE II
PERFORMANCE COMPARISON AMONG FOUR TYPES OF COST FUNCTIONS

MAPE (%)
Cost Estimation Day ahead Intra-day Estimation

Function Prediction Prediction time (second)
L2 1.7121 1.9748 1.8315 3
L1 1.5907 1.4739 1.6824 489

L1&L2 1.6651 2.0676 1.8712 64
L∗1 1.6000 1.4324 1.6903 650

Fig. 4. The comparison among four types of cost functions

B. Day-ahead vs. Intra-day Prediction

Both the day-ahead and the intra-day predictions for the
electricity consumption on 26 October 2018 using four types
of cost functions are displayed in Figures 5–8. It can be seen
that for all types of cost functions, there are gaps between
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the day-ahead as well as the intra-day prediction and the
real electricity consumption, especially in the early morning.
This can be explained by the large forecasting errors on the
temperature and humidity at that time period.

Fig. 5. Day-ahead and intra-day prediction with L2 cost function.

Fig. 6. Day-ahead and intra-day prediction with L1 cost function.

Fig. 7. Day-ahead and intra-day prediction with L1&L2 cost function.

Fig. 8. Day-ahead and intra-day prediction with L∗1 cost function.

In addition, there are gaps between day-ahead and intra-
day predictions due to the differences on the day-ahead and

intra-day weather forecasts, where the intra-day prediction is
better in the early morning.

C. Prediction Interval
The prediction interval using the first method and four

types of cost functions are exhibited in Figures 9–12, in
which α = 0.8. The computational time of this method is fast,
however the prediction interval is large, especially during the
peak time period.

Fig. 9. Intra-day prediction interval with L2 cost function by the first
method.

Fig. 10. Intra-day prediction interval with L1 cost function by the first
method.

Fig. 11. Intra-day prediction interval with L1&L2 cost function by the first
method.

For the bootstrap method, 16 days are chosen randomly
from 22 days of data to find the parameters of the iRBF–NN
in 1000 estimations, which then are used to generate 1000
predictions in Figure 13. Next, the maximum and minimum
of 90% of those 1000 lines are used to get the prediction
interval in Figure 14. The bootstrap-based method is more
meaningful than the first method in term of prediction be-
cause it uses the many predictions to compute the boundaries
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Fig. 12. Intra-day prediction interval with L∗1 cost function by the first
method.

Fig. 13. One thousand of intra-day predictions with L2 cost function using
the bootstrap method.

Fig. 14. Intra-day prediction interval with L2 cost function generated by
the bootstrap method.

of the prediction interval whilst the first method employs the
past data to create those boundaries. However, the bootstrap
takes much more computational time.

V. CONCLUSIONS

In this paper, a machine learning-based approach namely
iRBF–NN is proposed for the prediction of electricity con-
sumption using available Tokyo’s realistic data on the con-
sumption and the weather in the past and the weather forecast
in the future. Unlike other existing approaches which use
only the temperature, in our proposed approach several
weather parameters can be used as the input data. After
analyzing the correlation of such weather parameters to the
historical electricity consumption, the hourly temperature and
humidity are selected as two inputs to the iRBF–NN. Then
four types of optimization cost functions are employed and
compared on their estimation and prediction performance as
well as their computational times. Additionally, the predic-

tion interval is also studied by two methods whose compar-
isons are obtained in the test cases. Overall, the estimation
and prediction performances of the proposed approach are
good for all types of optimization cost functions, in which
the L1 cost function seems to be the best, even though the
weather forecast is not precise.
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