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Abstract: Nowadays, quadcopter unmanned aerial vehicles play important roles in several real-world
applications and the improvement of their control performance has become an increasingly attractive
topic of a great number of studies. In this paper, we present a new approach for the design and stability
analysis of a quadcopter adaptive trajectory tracking control. Based on the quadcopter nonlinear
dynamics model which is obtained by using the Euler–Lagrange approach, the tracking controller is
devised via the backstepping control technique. Besides, an adaptive law is proposed to deal with
the system parameterized uncertainties and to guarantee that the control input is finite. In addition,
the vehicle’s vertical descending acceleration is ensured to not exceed the gravitational acceleration by
making use of a barrier Lyapunov function. It is shown that the suitable parameter estimator is stable
and the tracking errors are guaranteed to be asymptotically stable simultaneously. By prescribing
certain flight conditions, we use numerical simulations to compare the control performance of our
method to that of existing approaches. The simulation results demonstrate the effectiveness of the
proposed algorithm.
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1. Introduction

Unmanned vehicles have currently been playing a crucial role in many aspects of our daily lives
where many robots can be used to operate and assist with complex tasks. Especially, unmanned
aerial vehicles (UAVs) have been widely researched to create many versatile applications for replacing
human from impossible missions and dangerous tasks [1], e.g., in agriculture [2], industry [3,4],
and military [5,6]. Quadcopters, which are one of the most popular class of UAVs, have only four
actuators, while there are six degrees of freedom, in that it is definitely an under-actuated system.
By being able to independently control the speed of each actuator, the vehicle can execute horizontal
and vertical movements to carry out a range of different assignments that can range from irrigating
large agricultural fields, over investigating and locating lost objects in remote or inaccessible areas
(e.g., forests, oceans, deserts), to simulating geographical maps. These tasks are all, somehow, based
on a reliable trajectory tracking controller. However, the quadcopter tracking control performance
always suffers from several influencing sources such as the system parameterized uncertainties and
external disturbances. Therefore, the design and stability analysis of a superior quadcopter trajectory
controller becomes one of the most important efforts that scientists and researchers all around the
world are undertaking.

1.1. Related Works

It is undeniable that the conventional proportional–integral–derivative (PID) control is still widely
used in a variety of many applications all over the world because it is uncomplicated to be applied
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and acceptably meet given requirements in many studies [7–15]. The authors [16–19] presented the
use of a multi-loop control scheme (i.e., inner-loop and outer-loop) to control quadcopters in specific
applications. Several authors improved a modified PID approach to design control laws based on
nonlinear mathematical models to achieve a position tracking [20,21]. By making use of the discrete
linearisation model of tracking errors, the PID controller combined with least quadratic regulation
(LQR) were presented in [22,23] to find a discrete control input. When it comes to tracking control
of mechanical systems, sliding mode control (SMC) is often employed to guarantee the stability of
the systems. The authors of [24,25] presented SMC laws combined with automatically tuning control
coefficients to achieve the partial system stability. Typically, the cascade principle is also applied to
design a full control law based on the Lyapunov’s direct method that guarantees the asymptotic stability
of each loop [25–32] via the backstepping technique [33]. Model predictive control, which obtains some
advantages of optimal control, was employed to carry out not only path-tracking problem, but also
state constraints [34,35]. In order to tackle external disturbances, a robust nonlinearH∞ controller [36]
was proposed to track the reference trajectory.

One of the obstacles of control design for quadcopter is the presence of system parameterized
uncertainties in the mathematical model. The system’s parameters must be updated to adjust its control
gains when adding several auxiliary devices or replacing some accessories, leading to inconvenience
in practice. Therefore, studies [31,37,38] used SMC in combination with an adaptive law based
on certainty equivalence principle [33] or artificial neural networks (ANNs) [39–41] to deal with
uncertainties such as inertial moments and arm length. By using Fuzzy logic, the authors [42] found a
control law without any advance knowledge about mathematical model of quadcopter. When ANNs
and Fuzzy logic are applied to identify the system model instead of using the explicit mathematical
model, the tracking performance of the considered system has still been controversial topic.

On the other hand, the above existing works still have some negative viewpoints in trajectory
tracking problem. Many kinds of PID control (i.e., conventional form, modified form, and combination
with LQR) may not clearly show the asymptotic stability. The control schemes based on SMC always
use a sign function to switch between two modes, i.e., controlled variables are either outside or within
the sliding surface, leading to chattering phenomenon. In other studies [17,25,43], the second order
SMC was applied to reduce a chattering phenomenon to enhance the tracking performance. Moreover,
it is a considerable drawback that SMC state variables have to reach the sliding surface in finite time to
guarantee the convergence at the origin, which was ignored in the above papers. Based on the cascade
principle, only a linear system which is a result of combining all linear stable subsystems can directly
achieve stability. In contrast, a nonlinear model systems may not be stable because of the appearance
of a finite escape time phenomenon which may cause state variables to become infinity in finite time
(Chapter 3 in [44]), leading to a highly undesirable case in automatic control systems.

1.2. Main Contributions

In this study, we design control laws and an adaptive law that guarantee both the system stability
and trajectory tracking for quadcopter in the presence of unknown constant parameters such as
inertial moment, arm length, and drag coefficients. Firstly, the quadcopter dynamics is parallelly
separated into horizontal and vertical dynamics because any motions in three-dimensional space are
their linear combination. The tracking ability of the entire horizontal subsystem is guaranteed by
using the backstepping technique based on Lyapunov’s direct method [33], while most of the previous
above papers [17,24,25,31] typically separated a horizontal subsystem into position and attitude parts
and did not carry out a stability analysis of this subsystem as a whole. Additionally, an adaptive
law is proposed to deal with system parameterized uncertainties which may be difficult to precisely
measured in many practical cases. To clearly demonstrate the effectiveness of the proposed approach,
the LaSalle’s theorem is applied to ensure that the parameter estimator is stable and tracking errors are
asymptotically stable at the origin. Finally, the motion along the vertical axis is improved by employing
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the barrier Lyapunov function [45], which allows smooth altitude changes that results in a capability
of descent lower than it freely fall to guarantee tracking error to be within the pre-specified bound.

1.3. Organization

The remainder of this paper consists of five parts. In Section 2, we define several symbols
and notation used throughout this paper and introduce the mathematical dynamics and all model
parameters. Section 3 describes state feedback controls and an adaptive law to prove the tracking
asymptotic stability of the entire system. In Section 4, the validity of the proposed method is verified
by the comparative performance of our approach and the other existing works. The final section
concludes this paper.

2. Preliminaries and Mathematical Model

The following notations and symbols will be used throughout this paper. The notations x or X
are the vector and bold letter X is the matrix. Next, Rn stands for set of real n-dimensional vector,
Rn×m denotes set of real n-row and m-column matrix, and In is the n× n identity matrix. cφ = cos(φ),
sφ = sin(φ), cθ = cos(θ), sθ = sin(θ), cψ = cos(ψ), and sψ = sin(ψ) are denoted. vec (X) denotes a
vectorization of a matrix X, e.g., if X = [X1, X2, X3] then vec (X) =

[
XT

1 , XT
2 , XT

3
]T . vec

(
Ẋ
)

represents
the first time-derivative of each its elements. Lastly, |•| and ⊗ are used to represent the absolute and
Kronecker product operators, respectively.

In this section, the model, the parameters, and the variables of Unmanned Arial Vehicles,
specifically Plus-Configuration are introduced in Figure 1, Tables 1 and 2, respectively. In order
to meet the requirements based on path tracking, a control law is expectedly designed to automatically
change four different rotor speeds Ωi. The intermediate control inputs [12] will be shown as follows:

U1 = b
(

Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4

)
U2 = b

(
−Ω2

2 + Ω2
4

)
U3 = b

(
Ω2

1 −Ω2
3

)
U4 = d

(
−Ω2

1 + Ω2
2 −Ω2

3 + Ω2
4

)
(1)

where U1 impacts on vertical movement, U2 and U3 are able to drive this system move forward, back,
turn left and right in the horizontal plane, and U4 makes this system rotate at a standing point.

Figure 1. Plus-Configuration of a quadcopter.
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Table 1. The quadcopter parameters.

Definition Symbol Unit

Mass of whole UAV m kg
Gravitational acceleration g m/s2

Arm length l m
Thrust coefficient b N·s2/rad2

Drag coefficient d N·s2/rad2

Inertial moment about x-axis Ixx kg·m2

Inertial moment about y-axis Iyy kg·m2

Inertial moment about z-axis Izz kg·m2

Drag moment coefficient µi s−1

Table 2. The quadcopter variables.

Definition Symbol Unit

Position in Earth frame x, y, z m
Position in Body frame xB, yB, zB m
Roll, Pitch, Yaw angles φ, θ, ψ rad

Rotor speed Ω1, Ω2, Ω3, Ω4 rad/s
Thrust force f1, f2, f3, f4 N

First, to achieve the mathematical model of the considered quadcopter, we use the Euler–Lagrange
approach to describe the system position ζ = [x, y, z]T in the Earth-fixed frame. The Euler–Lagrange
equations are applied into the system following a translational Etrans and a potential energy Epot [12]
as follows:

d
dt

[
∂

∂ζ̇
Ltrans

(
ζ̇, ζ
)]
− ∂

∂ζ
Ltrans = R fB (2)

Ltrans
(
ζ̇, ζ
)
= Etrans + Epot (3)

Etrans =
m
2

ζ̇T ζ̇ (4)

Epot = −mgz (5)

R =

cψcθ cψsθsφ− sψcφ cψsθcφ + sψsφ

sψcθ sψsθsφ + cψcφ sψsθcφ− cψsφ

sθ cθsφ cθcφ

 (6)

fB = [0, 0, U1]
T (7)

where matrix R in (6) is the transformation matrix from body to Earth-fixed frame and control input fB
(7) contains lift force U1 in z− axis of body frame in (1). Substituting (3), (4), (5), (6), and (7) into (2) to
obtain the second ordinary differential equations of dynamics in (8):

d
dt
(
ζ̇
)
=

U1

m

(cψsθcφ + sψsφ)

(sψsθcφ− cψsφ)

(cθcφ)

+

 0
0
−g

 (8)

Considering the dynamic rotation model based on the energy of rotation through Euler–Lagrange
method with hovering assumption. The second ordinary differential equations of Roll, Pitch, and Yaw
angles will be described with several unknown parameters in Table 1:

φ̈ = a1θ̇ψ̇− µ1φ̇ + b1U2

θ̈ = a2φ̇ψ̇− µ2θ̇ + b2U3

ψ̈ = a3φ̇θ̇ − µ3ψ̇ + b3U4

(9)
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a1 =
Iyy − Izz

Ixx
a2 =

Izz − Ixx

Iyy
a3 =

Ixx − Iyy

Izz

b1 =
l

Ixx
b2 =

l
Iyy

b3 =
1

Izz

(10)

Assumption 1. It is assumed that this considered system does not flip in the air and lift force U1 is positive
when the quadcopter is in operation.

−π

2
< φ <

π

2
,
−π

2
< θ <

π

2
, U1 > 0 (11)

Assumption 2. The considered system is required to track a reference trajectory vector [xd(t), yd(t), zd(t)]
T

which is differentiable up to four times. Especially, the second derivatives of zd(t), in particular, must satisfy the
following condition [32] to ensure that a quadcopter is not allowed to land faster than it freely fall under gravity
with a strictly positive constant k0:

inf (mz̈d(t) + mg) ≥ k0 (12)

Now, the control objective is to design an adaptive backstepping controller to steer the quadcopter
to asymptotically track the desired trajectory reference xd, yd, and zd, despite the presence of system
model uncertainties. Moreover, the stability of the entire system is analysed and established by using
Lyapunov’s direct method when combining suitable parameter estimators and control law based on
certainty equivalence principle and backstepping technique [33], respectively.

3. Trajectory Tracking Control: Adaptive Backstepping Design and Stability Analysis

In order to achieve expected performance, the mathematical model (8) can be separated into two
subsystems: horizontal (represented by the first two equations) and vertical motions (represented by
the last equation).

3.1. Horizontal Position Controller

Considering the desired trajectory is projected in the xy-plane. The purpose is that horizontal
position (x, y) is able to track this reference asymptotically.

Xd = [xd, yd]
T (13)

The horizontal state variables (14), (15) and virtual control input (16) can be shown as:

X = [x, y]T (14)

V = [ẋ, ẏ]T (15)

ϑ =

[
cos(φ) sin(θ)

sin(φ)

]
(16)

It is easily seen that the two first equations in (8) becomes (17) and (18) by using (14), (15), and (16):

Ẋ = V (17)

V̇ = A(U1, ψ)ϑ (18)

A(U1, ψ) =
U1

m

[
cos(ψ) sin(ψ)
sin(ψ) − cos(ψ)

]
(19)
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By calculating the virtual control (16), this system change its θ − Pitch or φ− Roll angle to move
along the x− axis or y− axis, respectively. The tracking error is chosen as:

ξ = X− Xd

ξ̇ = V − Ẋd
(20)

The first Lyapunov candidate function (21) and its time-derivative (22) along the solution of
model (20):

V1 =
1
2

ξTξ (21)

V̇1 = ξT (V − Ẋd
)

(22)

The virtual control input for (22) with positive definite matrix K1 ∈ R2×2 can be selected as:

r1 = Ẋd −K1ξ (23)

The second Lyapunov candidate function (24) and its time-derivative along solution of model (20)
and (23):

V2 =V1 +
1
2
(V − r1)

T (V − r1) (24)

V̇2 =ξT (V − Ẋd + r1 − r1
)
+ (V − r1)

T (A(U1, ψ)ϑ− ṙ1)

=− ξTK1ξ + (V − r1)
T (A(U1, ψ)ϑ− ṙ1 + ξ) (25)

It can be seen that when the input U1 satisfies Assumption 1, the matrix A(U1, ψ) is definitely
invertible. The virtual control input for (25) with positive definite matrix K2 ∈ R2×2 can be selected as:

r2 = A(U1, ψ)−1 [ṙ1 − ξ −K2 (V − r1)] (26)

The Roll and Pitch dynamic models in (9) are considered to find the control input:

ϑ̇ = B(φ, θ)q̇ (27)

B(φ, θ) =

[
− sin(φ) sin(θ) cos(φ) cos(θ)

cos(φ) 0

]

q̇ =

[
φ̇

θ̇

]
(28)

Remark 1. Generally, the horizontal movement is divided into position and attitude subsystems with separate
control laws. Previous studies presented a stability standard for each subsystem which led to the possibility of the
appearance of the finite escape time phenomenon. Equation (27) shows the relationship between the movement in
the xy-plane and attitude angles to prove the stability of the whole system in Theorem 1, which will definitely
eliminate the finite escape time phenomenon.

The third Lyapunov candidate function (29) and its time-derivative along solution of models (20),
(23), and (26):

V3 =V2 +
1
2
(ϑ− r2)

T (ϑ− r2) (29)

V̇3 =− ξTK1ξ − (V − r1)
T K2 (V − r1)

+ (ϑ− r2)
T
(

B(φ, θ)q̇− ṙ2 + A(U1, ψ)T (V − r1)
)

(30)
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Because the matrix B(φ, θ) is invertible, the virtual control input for (30) with positive definite
matrix K3 ∈ R2×2 can be selected as:

r3 = B(φ, θ)−1
[
ṙ2 −A(U1, ψ)T (V − r1)−K3 (ϑ− r2)

]
(31)

In order to obtain the horizontal tracking, two first Euler angle models in (9) are investigated to
find the intermediate control input U = [U2, U3]

T .

q̈ = E−1 [EC
(
φ̇, θ̇, ψ̇, µ4, µ5

)
+ U

]
(32)

EC
(
φ̇, θ̇, ψ̇, µ4, µ5

)
= C1

(
φ̇, θ̇, ψ̇

)
Γ (33)

where

E−1 =

[
b1 0
0 b2

]
, C
(
φ̇, θ̇, ψ̇, µ4, µ5

)
=

[
θ̇ψ̇a1 − φ̇µ4

φ̇ψ̇a3 − θ̇µ5

]
(34)

C1
(
φ̇, θ̇, ψ̇

)
=

[
θ̇ψ̇ −φ̇ 0 0
0 0 φ̇ψ̇ −θ̇

]
, Γ =


a1/b1

µ4/b1

a3/b2

µ5/b2

 (35)

Assumption 3. It is assumed that E, Γ are model uncertainties because they absolutely depend on the
environment, material, and arrangement of devices in a real model. Additionally, E and Γ satisfy the following
boundary conditions:

Γi−min ≤ Γi ≤ Γi−max (36)

bi−min ≤ bi ≤ bi−max (37)

Remark 2. It can be seen that the Equation (32) is transformed to separate matched uncertainty Γ and
multiplied control input parameter E. This is the proposition to present an adaptive law which can address the
aforementioned unknown parameter problem.

The fourth Lyapunov candidate function with positive definite matrices Q1 = QT
1 and

Q2 = QT
2 ∈ R4×4 is shown in (38), while Γ̂ and Ê are the estimated values of Γ and E, respectively:

V4 =V3 +
1
2
(q̇− r3)

T E (q̇− r3) +
1
2
(
Γ− Γ̂

)T Q−1
1
(
Γ− Γ̂

)
+

1
2

vec
(
E− Ê

)T Q−1
2 vec

(
E− Ê

)
(38)

V̇4 =− ξTK1ξ − (V − r1)
T K2 (V − r1)− (ϑ− r2)

T K3 (ϑ− r2)

+ (q̇− r3)
T
(

Eq̈− Eṙ3 + B(φ, θ)T (ϑ− r2)
)
−
(
Γ− Γ̂

)T Q−1
1

˙̂Γ− vec
(
E− Ê

)T Q−1
2 vec

(
˙̂E
)

(39)

The proposed intermediate control law (40) with positive definite matrix K4 ∈ R2×2 and the
proposed adaptive laws (41) and (42) can be selected as:

U =− B(φ, θ)T (ϑ− r2)−K4 (q̇− r3)−C1
(
φ̇, θ̇, ψ̇

)
Γ̂ + Êṙ3 (40)

˙̂Γ =−Q1C1
(
φ̇, θ̇, ψ̇

)T
(r3 − q̇) (41)

vec
(

˙̂E
)
=−Q2 (ṙ3 ⊗ (q̇− r3)) (42)

Theorem 1. In order to achieve horizontal asymptotic tracking stability, there exist positive control parameters
K1, K2, K3, K4, Q1, and Q2 such that the proposed control law (40) and adaptive laws (41), (42) can be applied
to the system models (8) and (9) under Assumptions 1 and 3.
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Proof of Theorem 1. By selecting appropriate positive constant matrices K1, K2, K3, K4, Q1, and Q2,
the time-derivative of the fourth Lyapunov candidate function (39) becomes:

V̇4 =− ξTK1ξ − (V − r1)
T K2 (V − r1)− (ϑ− r2)

T K3 (ϑ− r2)− (q̇− r3)
T K4 (q̇− r3)

+
(
Γ− Γ̂

)T Q−1
[
QC1

(
φ̇, θ̇
)T

(q̇− r3)− ˙̂Γ
]
− vec

(
E− Ê

)T Q−1
2

[
vec

(
˙̂E
)
+ Q2 (ṙ3 ⊗ (q̇− r3))

] (43)

V̇4 =− ξTK1ξ − (V − r1)
T K2 (V − r1)− (ϑ− r2)

T K3 (ϑ− r2)− (q̇− r3)
T K4 (q̇− r3) (44)

It is clear that the fourth Lyapunov candidate function (38) V4 ∈ κ∞ is a continuously differentiable
and the time-derivative V4 (44) is negative semi-definite. Let M be the largest invariant set at all points
V̇4 = 0. Then, every solution from arbitrary initial states will approach M as t → ∞ (Theorem 4.4
in [44]), which ensures that the entire system is asymptotically stable. Whereas, the errors between the
estimated unknown parameters Γ̂ and vec

(
Ê
)

and their real values, i.e., Γ and vec (E), are bounded
and tend to constant values.

3.2. Altitude Controller

The quadcopter’s vertical movement should be able to track the reference signal zd(t) which
should satisfy Assumption 2. To ensure safe operation, the system altitude should always be smooth
with a limited tracking error. This is achieved through the barrier Lyapunov function. The second
quadcopter subsystem along the z − axis is described in (45) with the boundary conditions of the
altitude tracking shown in (46):

z̈ =
1
m

(cos(φ) cos(θ))U1 − g (45)

|ez| = |z− zd| ≤ ε, ε ≥ 0 (46)

Lemma 1. [45] For any given positive constants ε, let Z , {ez ∈ R| |ez| < ε} ⊂ R and X , R4 ×Z ⊂ R5

be open sets.

Considering the general system

ς̇ = f (ς, u) (47)

where ς , [x, y, φ, θ, z]T ∈ X and f (ς, u) : X → R5. There exist functions V4: R4 → R+ and V5: Z → R+,
continuously differentiable and positive definite in their respective domains, such that

V4 (x, y, φ, θ) > 0 (48)

V̇4 < 0 (49)

V5(ez)→ ∞ as |ez| → ε (50)

Let V (ς) = V4 (x, y, φ, θ) + V5(ez), and ez(0) belongs to the set ez ∈ (−ε, ε). If the time-derivative
along the state trajectory can be achieved as:

L f V =
∂V
∂ς

f < 0 (51)

then ez(t) remains in the open set (−ε, ε), ∀t ∈ [0, ∞)
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The fifth Lyapunov candidate function (52) and its time-derivative along the solution of
model (45):

V5 =
1
2

ln
∣∣∣∣ ε2

ε2 − e2
z

∣∣∣∣+ 1
2
(ż− r4)

2 (52)

r4 = żd − k5ez

(
ε2 − e2

z

)
(53)

Time-derivative of (52):

V̇5 =
ez (ż− żd + r4 − r4)

ε2 − e2
z

+ (ż− r4) (z̈− ṙ4) (54)

=− k5e2
z + (ż− r4)

[
1
m

cφcθU1 − g− ṙ4 +
ez

ε2 − e2
z

]
(55)

Under Assumption 1, cos(φ) and cos(θ) are always strictly positive. Therefore, the proposed
vertical control law can be shown as:

U1 =
m

cφcθ

[
−k6 (ż− r4) + g + ṙ4 −

ez

ε2 − e2
z

]
(56)

There exist the positive scalars k5 and k6 appropriately such that the controller (56) forces vertical
flight to achieve the bounded tracking asymptotic stability of system (45) at the origin. Therefore,
the time-derivative of V5 (55) is negative definite:

V̇5 = −k5e2
z − k6 (ż− r4)

2 < 0 (57)

According to Lemma 1, the tracking error is always bounded |ez(t)| < ε as long as the assumption
|ez(0)| < ε holds. It is clear that if the desired signal zd is created to satisfy Assumption 2 and the
altitude error is always bounded, the safety of the system is guaranteed. Additionally, because the error
will never reach its boundary |ez(t)| = ε, the control input (56) will also never become unbounded.

The control diagram of the proposed control and adaptive law is shown in Figure 2 to certainly
show our contributions in three red boxes. In the box [1], the virtual control r2 and a new variable
ϑ are presented to clearly describe the relationship between two loops of the horizontal subsystem.
Additionally, there is a new adaptive law to estimate several unknown parameters such as inertial
moment, arm length, and drag moment coefficients in the box [2]. Finally, the box [3] shows the
proposed altitude controller which forces the tracking error to lie in its boundary to ensure the safety
of this system.

After determining the desired trajectory, the guidance function separates that into two movements,
i.e., horizontal (xd, yd) and vertical zd motions. The proposed horizontal and altitude controllers receive
their references to provide the independent control inputs. In horizontal flow, the virtual input r1 is
calculated by combining tracking error ξ and the time-derivative of reference in (23). At the next stage,
by using the matrix A(U1, ψ) (19), r1, and the horizontal velocities, virtual control r2 (26) is obtained to
become the input of the aforementioned box [1]. After finding virtual control r3 (31), the proposed
adaptive law in the mentioned box [2] (41) and (42) cooperatives with r3 and angular rate q̇ to obtain the
intermediate control law (40). On the other hand, altitude controller U1 (56) is calculated by combining
the virtual input r4 (53) and Euler angle q. The final block-control allocation (1) automatically generates
four different rotors speeds Ωi (i = 1, 4) to meet the requirements based on trajectory tracking.
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Figure 2. Control diagram of the proposed method.

4. Numerical Results

In order to verify the proposed method in this paper, we evaluate the simulation results of the
Unmanned Aerial Vehicle–Quadcopter following several desired tracking trajectories. The parameters
of the proposed system are given as: m = 1.568 kg, Ixx = Iyy = 0.0119 kg·m2, Izz = 0.0223 kg·m2,
g = 9.8 m/s2, b = 7.73× 10−6 Ns2, d = 1.28× 10−7 Nms2, µ1 = µ2 = µ3 = 0.1 s−1 and the initial
states are chosen such that an initial position of the quadcopter lies outside the desired trajectory to
strongly verify the proposed method: x(0) = 0.5 m, y(0) = 0.5 m, z(0) = 0 m, φ(0) = θ(0) = ψ(0) = 0
rad, xd(0) = 0 m, yd(0) = 0 m, zd(0) = 0 m, Γ̂(0) = [1, 1, 1, 1]T , vec

(
Ê
)
= [0.5, 0.5, 0.5, 0.5]T . Based on

the proposed Theorem 1, the matrix and scalar coefficients are selected as follows: K1 = I2, K2 = 2I2,
K3 = 3I2, K4 = 16I2, k5 = 6, k6 = 5, ε = 0.2, Q1 = 10I4, Q2 = 4I4.

The simulation scenarios involve several flying shapes in the air from where the initial position
does not belong to these desired paths. The objective is that the investigated system should be able to
track given trajectories using finite time simulation and satisfying Assumption 2. To generate several
complicated orbits, the desired η polygon horizontal trajectory is created in two-dimensional space [27]
as follows:

xd = a [R + cos (ηωt)] cos (ωt)

yd = a [R + cos (ηωt)] sin (ωt)

zd = [hd − z(0)]
(
1− e−ωt)+ z(0)

(58)

where a, ω, and R are the scale, the angular velocity, and radius of the desired trajectory, respectively.
They were set to a = 2.5, ω = 0.5 rad/s, and R = 1 m. It can be observed that the reference trajectories
can be generated by changing η in (58) to obtain η-sided smooth polygon. We either set η = 6
(Figure 3a) or η = 10 (Figure 3b) in xyz-space and xy-plane and desired altitude hd = 4 m to generate
two reference shapes to verify the proposed approach. Additionally, to emphasize the effectiveness
of the proposed scheme, the adaptive sliding mode control [25] and Multi-loop PID [46] are also
applied to this tracking problem. These methods show that the position and attitude subsystems are
guaranteed to be in stability by two separated controllers, but there is not any relationship between
these two loops. Therefore, we expect our method presented in the red box [1] in Figure 3a to be able
to cope with issue.
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(a) Desired trajectory as a 6-sided smooth polygon. (b) Desired trajectory as a 10-sided smooth polygon.

Figure 3. Trajectory tracking performance of the proposed method in the xyz-space and xy-plane.

Figure 4a,b compares the performance of three different approaches which include the proposed
method, adaptive sliding mode control, and Multi-loop PID. Having started from the same initial state,
the 3D position tracking errors tend towards the origin. If we increase the model parameters by 30%
to investigate the system robustness, only the blue solid line asymptotically converges to the origin
because of the proposed adaptive law. The estimated values of Γ, E in Figure 5a,b become constant as
time goes to infinity, which verifies our Theorem 1. The remaining curves exhibit oscillations in the
tracking errors along the x and y-axes from the fifth to the twentieth second. Moreover, when it comes
to considering the z-axis, the error of altitude tracking asymptotically converges to the origin and is
always limited by ε in (46) to ensure Assumption 2.
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(a) η = 6. (b) η = 10.

Figure 4. Comparison of tracking error performance between our method and existing approaches.
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(a) η = 6. (b) η = 10.

Figure 5. The estimated unknown parameters of the proposed method.

Figure 6a,b compares the errors between position and attitude subsystems in terms of three
different methods. Most of the previous studies tended to divide the horizontal subsystem into
position and attitude parts to separately design a control law, which may cause a finite escape time.
These figures confirm that this undesirable phenomenon which is mentioned in Remark 1 does not
appear to guarantee the globally asymptotic stability of the proposed scheme. The authors in [25]
employed an adaptive sliding mode control to achieve fast response for the attitude subsystem in
an effort to avoid the finite escape time. However, this approach definitely created a chattering
phenomenon which may cause damage to the practical system. While the dotted line responds to
the reference trajectory slower than the dashed line to prevent chattering to obtain better tracking
performance, there is a finite escape time at initial state. It can be seen that responses of the both
adaptive SMC and multi-loop PID gradually chatter and oscillate around zero, which cannot be able
to achieve asymptotic stability. In contrast, the proposed method prevents either weakness from
occurring in Figure 6a,b. Because the proposed adaptive law requires a small time interval depending
on matrix Q1 and Q2 to estimate unknown parameters (Figure 5a,b), the errors/solid lines between
a new proposed variable ϑ and a virtual control input r2 rapidly fluctuating around zero before
asymptotically converging to the origin during ten seconds from the fifth second. By reviewing the
Figures 4a,b, 5a,b, and 6a,b, we can validate the effectiveness of the proposed Theorem 1.
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(a) η = 6. (b) η = 10.

Figure 6. Comparison of two loops’ error variables between our method and existing approaches.

5. Conclusions

In conclusion, a theoretical constructive scheme of the quadcopter in three-dimensional space has
been proposed to carry out the trajectory tracking problem in the presence of uncertain parameters.
Additionally, this method is able to eliminate the finite escape time when separating the mathematical
model into several subsystems and to allow smooth altitude changes. In order to design the horizontal
and altitude controllers, our approach parallelly separates the mathematical model of the investigated
quadcopter into horizontal and vertical subsystems. The main successes of this paper include: (1) we
have modified the use of backstepping technique to integrate position and attitude submodels for
the horizontal control law, which theoretically demonstrates the asymptotic stability of the entire
horizontal subsystem; (2) we have proposed an adaptive law to estimate several unknown parameters
such as arm length, inertial moment, and viscous coefficients which are difficult to be accurately
calculated in practice to obtain the constant values that automatically adjust the aforementioned
horizontal controller. By invoking the LaSalle’s theorem, the horizontal tracking error is asymptotically
stable and the suitable parameter estimator is stable; and (3) we have applied the barrier Lyapunov
function to guarantee the altitude tracking error to be within the pre-specified bound, which ensures
that the vehicle’s vertical descending acceleration does not exceed the gravitational acceleration.
Through simulation comparison with the existing studies, we could verify the effectiveness of and
superior performance of our method with regard to path tracking. In future work, we plan to combine
several quadcopter models or quadcopter with other ground robots to extend this proposed approach
to become a cooperative system.
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