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Abstract: Efficiently planning trajectories for nonholonomic mobile robots in formation
tracking is a fundamental yet challenging problem. Nonholonomic constraints, complexity in
collision avoidance, and limited computing resources prevent the robots from being practically
deployed in realistic applications. This paper addresses these difficulties by modeling each mobile
platform as a nonholonomic motion and formulating trajectory planning as an optimization
problem using model predictive control (MPC). That is, the optimization problem is subject
to both nonholonomic motions and collision avoidance. To reduce computing costs in real
time, the nonholonomic constraints are convexified by finding the closest nominal points to
the nonholonomic motion, which are then incorporated into a convex optimization problem.
Additionally, the predicted values from the previous MPC step are utilized to form linear
avoidance conditions for the next step, preventing collisions among robots. The formulated
optimization problem is solved by the alternating direction method of multiplier (ADMM) in
a distributed manner, which makes the proposed trajectory planning method scalable. More
importantly, the convergence of the proposed planning algorithm is theoretically proved while
its effectiveness is validated in a synthetic environment.
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1. INTRODUCTION

Nowadays, autonomous wheeled mobile robots (WMR)
have become ubiquitous in many applications including
cooperative transportation (Yufka et al., 2010; Nguyen
et al., 2020), search and coverage (Mirzaei et al., 2011)
and environmental monitoring (Le et al., 2021b) to name
a few. Moreover, collaboration in a group of WMRs opens
possibilities to carry out sophisticated tasks that cannot
be handled by a single agent (Binh et al., 2021; Nguyen
et al., 2016b; Nguyen and La, 2017; Nguyen et al., 2021).
However, the interaction between robots exposes challeng-
ing problems in collision avoidance, real-time processing,
nonholonomic pose, and distributed implementation. Al-
though many studies were devoted to trajectory planning
for multiple WMRs (Matouš et al., 2022), due to the
complicated nature of collaborations and limited resources
on mobile platforms, it is still needed to further enhance
the planning strategies for the robots to efficiently deal
with computing costs, nonholonomic motions, and scala-
bility. To this end, this paper presents a collision-free and
distributed convexified model predictive control (MPC)

method for trajectory planning of multiple nonholonomic
mobile robots.

MPC has been recognized as an effective approach to
determining the control inputs of multiple-input multiple-
output and underactuated systems by solving constrained
optimization problems that are associated with predictions
of state variables (Camacho and Alba, 2013; Nguyen et al.,
2022). In recent years, MPC-based methods have also
been employed for controlling or planning of multiple non-
holonomic mobile robots (Van Parys and Pipeleers, 2017;
Alrifaee et al., 2017). For a large number of robots, crucial
factors for real-time implementations of MPC-based plan-
ning algorithms are their computational resources that are
required to solve a highly constrained optimization prob-
lem over a specified horizon at each time step (LaValle,
2006). It is worth noting that most kinematic models of
mobile robots are nonlinear, which leads to difficulties
in developing MPC-based algorithms. In this case, the
nonlinear (Katriniok et al., 2019; Viana et al., 2019) and
convexified (Le et al., 2021a) MPCs are two common
approaches that can be used to deal with the nonlinearities
entailed by the nonholonomic motion. Though it is com-
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for multiple WMRs (Matouš et al., 2022), due to the
complicated nature of collaborations and limited resources
on mobile platforms, it is still needed to further enhance
the planning strategies for the robots to efficiently deal
with computing costs, nonholonomic motions, and scala-
bility. To this end, this paper presents a collision-free and
distributed convexified model predictive control (MPC)

method for trajectory planning of multiple nonholonomic
mobile robots.

MPC has been recognized as an effective approach to
determining the control inputs of multiple-input multiple-
output and underactuated systems by solving constrained
optimization problems that are associated with predictions
of state variables (Camacho and Alba, 2013; Nguyen et al.,
2022). In recent years, MPC-based methods have also
been employed for controlling or planning of multiple non-
holonomic mobile robots (Van Parys and Pipeleers, 2017;
Alrifaee et al., 2017). For a large number of robots, crucial
factors for real-time implementations of MPC-based plan-
ning algorithms are their computational resources that are
required to solve a highly constrained optimization prob-
lem over a specified horizon at each time step (LaValle,
2006). It is worth noting that most kinematic models of
mobile robots are nonlinear, which leads to difficulties
in developing MPC-based algorithms. In this case, the
nonlinear (Katriniok et al., 2019; Viana et al., 2019) and
convexified (Le et al., 2021a) MPCs are two common
approaches that can be used to deal with the nonlinearities
entailed by the nonholonomic motion. Though it is com-

Real-time distributed trajectory planning
for mobile robots

Binh Nguyen ∗, Truong Nghiem ∗∗, Linh Nguyen ∗∗∗,
Anh Tung Nguyen ∗∗∗∗, Thang Nguyen ∗

∗ College of Engineering, Texas A&M University-Corpus Christi, Texas
78412, USA, (e-mail: binh.nguyen@tamucc.edu,

thang.nguyen@tamucc.edu, corresponding author: Thang Nguyen)
∗∗ School of Informatics, Computing, and Cyber Systems, Northern

Arizona University, Flagstaff, AZ 86011, USA
∗∗∗ Institute of Innovation, Science and Sustainability, Federation

University Australia, Churchill 3842, VIC, Australia
∗∗∗∗ Department of Information Technology, Uppsala University, PO

Box 337, SE-75105, Uppsala, Sweden

Abstract: Efficiently planning trajectories for nonholonomic mobile robots in formation
tracking is a fundamental yet challenging problem. Nonholonomic constraints, complexity in
collision avoidance, and limited computing resources prevent the robots from being practically
deployed in realistic applications. This paper addresses these difficulties by modeling each mobile
platform as a nonholonomic motion and formulating trajectory planning as an optimization
problem using model predictive control (MPC). That is, the optimization problem is subject
to both nonholonomic motions and collision avoidance. To reduce computing costs in real
time, the nonholonomic constraints are convexified by finding the closest nominal points to
the nonholonomic motion, which are then incorporated into a convex optimization problem.
Additionally, the predicted values from the previous MPC step are utilized to form linear
avoidance conditions for the next step, preventing collisions among robots. The formulated
optimization problem is solved by the alternating direction method of multiplier (ADMM) in
a distributed manner, which makes the proposed trajectory planning method scalable. More
importantly, the convergence of the proposed planning algorithm is theoretically proved while
its effectiveness is validated in a synthetic environment.

Keywords: Multi-robot Systems, Distributed Model Predictive Control, Nonholonomic
Trajectory Planning, Real-time Optimization, Convexification.

1. INTRODUCTION

Nowadays, autonomous wheeled mobile robots (WMR)
have become ubiquitous in many applications including
cooperative transportation (Yufka et al., 2010; Nguyen
et al., 2020), search and coverage (Mirzaei et al., 2011)
and environmental monitoring (Le et al., 2021b) to name
a few. Moreover, collaboration in a group of WMRs opens
possibilities to carry out sophisticated tasks that cannot
be handled by a single agent (Binh et al., 2021; Nguyen
et al., 2016b; Nguyen and La, 2017; Nguyen et al., 2021).
However, the interaction between robots exposes challeng-
ing problems in collision avoidance, real-time processing,
nonholonomic pose, and distributed implementation. Al-
though many studies were devoted to trajectory planning
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MPC has been recognized as an effective approach to
determining the control inputs of multiple-input multiple-
output and underactuated systems by solving constrained
optimization problems that are associated with predictions
of state variables (Camacho and Alba, 2013; Nguyen et al.,
2022). In recent years, MPC-based methods have also
been employed for controlling or planning of multiple non-
holonomic mobile robots (Van Parys and Pipeleers, 2017;
Alrifaee et al., 2017). For a large number of robots, crucial
factors for real-time implementations of MPC-based plan-
ning algorithms are their computational resources that are
required to solve a highly constrained optimization prob-
lem over a specified horizon at each time step (LaValle,
2006). It is worth noting that most kinematic models of
mobile robots are nonlinear, which leads to difficulties
in developing MPC-based algorithms. In this case, the
nonlinear (Katriniok et al., 2019; Viana et al., 2019) and
convexified (Le et al., 2021a) MPCs are two common
approaches that can be used to deal with the nonlinearities
entailed by the nonholonomic motion. Though it is com-

putationally expensive, the former is only able to return
a local solution for a non-convex optimization problem.
Likewise, the later suggests transforming the non-convex
nonholonomic constraints into approximate forms in order
to convert them into convexified optimization problems,
making them solvable.

In the literature, it is well known that a distributed MPC
technique can utilize less computational effort and provide
better scalability than a centralized counterpart. Instead
of solving a complicated nonlinear non-convex optimiza-
tion problem directly, an optimal solution can be itera-
tively obtained through local sub-problems. For instance,
Van Parys and Pipeleers (2016) provided a distributed
MPC paradigm based on ADMM for planning trajectories
of multiple linear robotic systems. Recently, Lafmejani and
Berman (2021) proposed online centralized nonlinear MPC
methods for controlling multiple nonholonomic robots.
Nevertheless, it simplifies collision avoidance to only one
horizontal direction, which consequently limits the robot
maneuver. Therefore, it is still challenging to implement
the distributed MPC algorithms for nonholonomic mobile
robots.

In this paper, a real-time distributed trajectory planning
problem for multiple nonholonomic robots using both
MPC and ADMM is further investigated. Specifically, we
first formulate the planning problem as an optimization
problem with convexified nonholonomic constraints. We
then propose to find the linearization point-based distance
minimization to the nonholonomic motion before applying
them to solve convex optimization problems. The proposed
algorithm leads to an improvement in the accuracy of the
prediction for the next steps. Differing from the Voronoi
portion approach (Nguyen et al., 2016a; Le et al., 2022),
our work presents the first attempt at taking advantage of
the predicted values in the previous step to form linear
avoidance conditions for the next step. The proposed
algorithm was validated in two numerical simulations with
promising results.

2. PRELIMINARIES

2.1 Description of robots and formation

Consider a group of Nv robots in a two-dimensional (2D)
space. Let us define a bounded convex set S ∈ R2 as the
space where the robots operate. Each robot is considered
a circle with radius R centered at pi(t) ∈ R2, for every
i ∈ V = {1, 2, . . . , Nv}. Here, the variable t ∈ N is
the discrete-time instant. In the group of robots, each
robot must know its destination point and can make bi-
directional communication with its neighbors to establish
a communication network. The network of the robots is
described by a graph G(t) at all times. This work assumes
that the communication graph G(t) may vary over time t

but is always strongly connected. At time t, let N (t)
i be

the set of neighbors of robot i, |N (t)
i | be the number of

elements in N (t)
i , and E(t) be the set of (i, j) such that

robot i has a communication channel with robot j (i.e.,
E(t) is the set of edges of G(t)).

2.2 Problem formulation

Let us consider the continuous-time kinematics of wheeled
mobile robots (WMRs) in the following form

ẋi = vi cosϕi, (1a)

ẏi = vi sinϕi, (1b)

ϕ̇i = ωi, (1c)

where pi = [xi, yi]
⊤, ϕi, vi and ωi are the position, heading

angle, linear velocity, and angular velocity of WMR i,
respectively.

This section presents an online distributed trajectory
planning problem for multiple robots. The sampling-based
motion planning approach (LaValle, 2006, Chapter 5) is
used to design the reference trajectory of each robot in
the group with a small sampling time τ > 0. Here,
the reference trajectories are replanned every sampling
step, the discrete time steps t − 1, t, and t + 1 ∈ N
are consecutive replanning instants, and the reference
trajectories are constant between two consecutive time
steps t and t + 1. At each replanning step t, we define
the predicted sampled trajectory planning as a sequence

{r(t)i,h =
[
x
(t)
i,h+1, y

(t)
i,h+1

]⊤}h=1,2,...,Nh
, where r

(t)
i,1 is pi at

sampling step t, and Nh is the number of predictive steps
of the planned trajectory. Based on kinematics (1), the
following predicted model is given by

x
(t)
i,h+1 = x

(t)
i,h + τ v

(t)
i,h cosϕ

(t)
i,h+1, (2a)

y
(t)
i,h+1 = y

(t)
i,h + τ v

(t)
i,h sinϕ

(t)
i,h+1, (2b)

ϕ
(t)
i,h+1 = ϕ

(t)
i,h + σω

(t)
i,h, (2c)

where x
(t)
i,1 = xi(tτ), y

(t)
i,1 = yi(tτ) and ϕ

(t)
i,1 = ϕi(tτ);

v
(t)
i,h and ω

(t)
i,h are predicted navigation linear and angular

velocities; and σ = eτ − 1. In this paper, we assume that
Nh is predetermined and constant at all times. A variable
with the superscript (t) indicates its predicted values at
replanning step t. If each robot can track its reference

trajectory perfectly (r
(t)
i,1 = pi(t+1) for all t), the planned

trajectories should meet the following requirements: (i)

robots i and j do not intersect, i.e, ∥r(t)i,h − r
(t)
j,h∥2 ≥ 2R

for all (i, j) ∈ V × (V \ {i}), h = 0, 1, . . . , Nh; (ii)

r
(t)
i,h is bounded, i.e., ∥r(t)i,h∥2 is bounded by geometrical

and physical limitations; and (iii) each robot reaches its
destination pFi ∈ S as t increases.

Furthermore, we consider the following geometrical and
physical limitations on the discrete model (2a) as follows:

r
(t)
i,h ∈ S, |ϕ(t)

i,h+1 − ϕ
(t)
i,h| ≤ τ ω̄i, |v(t)i,h| ≤ v̄i, (3)

where v̄i, ω̄i > 0 are maximum allowable values of linear
and angular velocities.

3. THE PROPOSED METHOD

This section presents an MPC-based method for designing

the trajectory r
(t)
i,h for h = 1, . . . , Nh at each time step

t. For each prediction step, the planning trajectories are
designed with consideration to collision avoidance among
robots.
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3.1 Collision avoidance

It should be noted that collision avoidance results in
non-convex constraints. Thus, the obtained optimization
problem might not be solved effectively. In this paper,
each robot makes a replica of its neighbors’ positions
(virtual position) to conduct collision avoidance. This
paper considers a relaxed version of collision avoidance by
the following lemma:

Lemma 1. For vector functions f1, f2 : t → R2, if there
exists a unit vector u : t → R2 (∥u∥2 = 1) such that

(f1 − f2)
⊤u ≥ R, (4)

then ∥f1 − f2∥2 ≥ R for all t.

Proof: The proof of Lemma 1 is obtained by applying the
Cauchy-Schwarz inequality to the inequality (4).

Assumption 1. No collision occurs in the group of robots
at the initial time.

With the help of Lemma 1, let us propose the collision
avoidance condition between robots i and j in the following
inequality �

r
(t)
i,h − r

(t)
j,h

⊤
u
(t)
ij,h ≥ 2R, (5)

where the unit vector u
(t)
ij,h is calculated from the predicted

positions of the previous step:

u
(t)
ij,h =




r
(t−1)
i,h − r

(t−1)
j,hr(t−1)

i,h − r
(t−1)
j,h


2

, h = 2, . . . , Nh,

pi(t)− pj(t)pi(t)− pj(t)

2

, h = 1.

(6)

However, the communication graph can change suddenly,
the predicted positions might not be available for the
new neighbors. For example, no prediction in the initial
situation, or robot j does not communicate with robot i

in the previous step. Thus, let u
(t)
ij,h = u

(t)
ij = (pi(t) −

pj(t))(
pi(t)−pj(t)


2
)−1 be constant at the current time

step.

In light of the collision avoidance condition (5), we will
propose a distributed planning algorithm for each robot.
This algorithm not only ensures that each robot can
reach its given destination but also guarantees collision-
free trajectories in the next prediction steps.

3.2 Planning Algorithm

First of all, we take the local cost function for each robot
as the following structure

f
(t)
i = f

(t)
i,des + αf

(t)
i,ener + β

(t)
i , (7)

with the weighting factor α > 0 and

f
(t)
i,des =

Nh
h=1

r(t)i,h − pFi

2
2
,

f
(t)
i,ener =

Nh
h=1

�
v
(t)
i,h

2
+

1

τ2
�
ϕ
(t)
i,h − ϕ

(t)
i,h−1

2
,

where f
(t)
ℓ,des stands for the navigation action of the robots;

f
(t)
ℓ,ener represents a control effort to reach the desired posi-

tion; β
(t)
i stands for a relaxation term for the convergence

condition. We here prefer ϕi,h to ωi,h to reduce the num-
ber of decision variables used in optimization problems

afterward, i.e. the cost function f
(t)
i does not include the

variable ωi,h. At each time step t, let us consider the
following distributed optimization problem

minimize
r
(t)

i,h
,β

(t)
i

,v
(t)

i,h
,ϕ

(t)

i,h

Nv
i=1

f
(t)
i (8a)

s.t. (2a), (2b) and (3), i ∈ V, h ∈ H, (8b)

r
(t)
i,h−r

(t)
j,h

⊤
u
(t)
ij,h ≥ 2R+ ε, ∀j ∈ N (t)

i , (8c)

f
(t)
i,des ≤ γf

(t−1)
i,des + β

(t)
i µt

i, (8d)

where u
(t)
ij,h is given by (6); ε is a safe distance between two

robots; γ, µi ∈ (0, 1) are given damping coefficients. The

idea of using β
(t)
i is from safety-critical control (Nguyen

and Sreenath, 2022; Garg et al., 2022) to relax the con-
vergence condition (8d) with damping factor γ. That is,

f
(t)
i,des is not required to decrease after each iteration of the
MPC-based algorithm. The feasibility of the optimization
problem (8) can be further discussed in Zeng et al. (2021).
Based on the optimization problem (8), the path-planning
algorithm 1 shows the steps of the online formation trajec-
tory planning for multiple WMRs with collision avoidance.

Algorithm 1 Planning Algorithm

Input: Number of robots Nv, radius R, safe distance
ε, predictive horizon Nh and current position ri(t).

Output: r
(t)
i,h, h = 1, 2, . . . , Nh.

1: Initiate: at k = 1, set r
(t)
i,0 = pi(t).

2: At robot i, at each time instant t, solve the optimiza-

tion problem (8) to obtain r
(t)
i,h, i = 1, 2, . . . , Nv.

3: Let {r(t)i,1}t=0,1,... be the planned trajectory.

3.3 Algorithm analysis

To analyze the convergence of Algorithm 1, we assume that

each robot can track its reference, i.e. pi(t+ 1) = r
(t)
i,1.

Proposition 1. For µ ∈ (0, 1), suppose that the optimiza-
tion problem (8) is feasible for all t. Then, the robot i
reaches its destination pFi as t increases.

Proof: To begin with, let Ji,k = f
(k)
i,des. From (8d), we have

Ji,k ≤ γJi,k−1 + β
(k)
i µk

i , where β
(k)
i is a solution to the

optimization problem (8). Taking the summation of both

sides of the inequality from 0 to k and noting that β
(k)
i is

upper bounded by β̄, one has (1 − γ)
k

t=0 Ji,t ≤ Ji,0 +

β̄
1−µk

i

1−µi
. Through the limits, we have

∞
t=0 Ji,t ≤ Ji,0

1−γ +
β̄

(1−γ)(1−µi)
, which implies that lim

t→∞
Ji,t = 0, lim

t→∞
∥r(t)i,0 −

pFi
∥2 = 0 for all i ∈ V. ■

Unlike the other works on online distributed trajectory
planning (Van Parys and Pipeleers, 2017; Park et al.,
2022), our paper discusses the convergence analysis of
the designed planning algorithm by introducing (8d). The
presence of the term βµk plays an important role as a
relaxation for the constraint Ji,k ≤ γJi,k−1. Moreover, in
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3.1 Collision avoidance

It should be noted that collision avoidance results in
non-convex constraints. Thus, the obtained optimization
problem might not be solved effectively. In this paper,
each robot makes a replica of its neighbors’ positions
(virtual position) to conduct collision avoidance. This
paper considers a relaxed version of collision avoidance by
the following lemma:

Lemma 1. For vector functions f1, f2 : t → R2, if there
exists a unit vector u : t → R2 (∥u∥2 = 1) such that

(f1 − f2)
⊤u ≥ R, (4)

then ∥f1 − f2∥2 ≥ R for all t.

Proof: The proof of Lemma 1 is obtained by applying the
Cauchy-Schwarz inequality to the inequality (4).

Assumption 1. No collision occurs in the group of robots
at the initial time.

With the help of Lemma 1, let us propose the collision
avoidance condition between robots i and j in the following
inequality �

r
(t)
i,h − r

(t)
j,h

⊤
u
(t)
ij,h ≥ 2R, (5)

where the unit vector u
(t)
ij,h is calculated from the predicted

positions of the previous step:

u
(t)
ij,h =




r
(t−1)
i,h − r

(t−1)
j,hr(t−1)

i,h − r
(t−1)
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
2

, h = 2, . . . , Nh,

pi(t)− pj(t)pi(t)− pj(t)

2

, h = 1.

(6)

However, the communication graph can change suddenly,
the predicted positions might not be available for the
new neighbors. For example, no prediction in the initial
situation, or robot j does not communicate with robot i

in the previous step. Thus, let u
(t)
ij,h = u

(t)
ij = (pi(t) −

pj(t))(
pi(t)−pj(t)


2
)−1 be constant at the current time

step.

In light of the collision avoidance condition (5), we will
propose a distributed planning algorithm for each robot.
This algorithm not only ensures that each robot can
reach its given destination but also guarantees collision-
free trajectories in the next prediction steps.

3.2 Planning Algorithm

First of all, we take the local cost function for each robot
as the following structure

f
(t)
i = f

(t)
i,des + αf

(t)
i,ener + β

(t)
i , (7)

with the weighting factor α > 0 and

f
(t)
i,des =

Nh
h=1

r(t)i,h − pFi

2
2
,

f
(t)
i,ener =

Nh
h=1

�
v
(t)
i,h

2
+

1

τ2
�
ϕ
(t)
i,h − ϕ

(t)
i,h−1

2
,

where f
(t)
ℓ,des stands for the navigation action of the robots;

f
(t)
ℓ,ener represents a control effort to reach the desired posi-

tion; β
(t)
i stands for a relaxation term for the convergence

condition. We here prefer ϕi,h to ωi,h to reduce the num-
ber of decision variables used in optimization problems

afterward, i.e. the cost function f
(t)
i does not include the

variable ωi,h. At each time step t, let us consider the
following distributed optimization problem

minimize
r
(t)

i,h
,β

(t)
i

,v
(t)

i,h
,ϕ

(t)

i,h

Nv
i=1

f
(t)
i (8a)

s.t. (2a), (2b) and (3), i ∈ V, h ∈ H, (8b)

r
(t)
i,h−r

(t)
j,h

⊤
u
(t)
ij,h ≥ 2R+ ε, ∀j ∈ N (t)

i , (8c)

f
(t)
i,des ≤ γf

(t−1)
i,des + β

(t)
i µt

i, (8d)

where u
(t)
ij,h is given by (6); ε is a safe distance between two

robots; γ, µi ∈ (0, 1) are given damping coefficients. The

idea of using β
(t)
i is from safety-critical control (Nguyen

and Sreenath, 2022; Garg et al., 2022) to relax the con-
vergence condition (8d) with damping factor γ. That is,

f
(t)
i,des is not required to decrease after each iteration of the
MPC-based algorithm. The feasibility of the optimization
problem (8) can be further discussed in Zeng et al. (2021).
Based on the optimization problem (8), the path-planning
algorithm 1 shows the steps of the online formation trajec-
tory planning for multiple WMRs with collision avoidance.

Algorithm 1 Planning Algorithm

Input: Number of robots Nv, radius R, safe distance
ε, predictive horizon Nh and current position ri(t).

Output: r
(t)
i,h, h = 1, 2, . . . , Nh.

1: Initiate: at k = 1, set r
(t)
i,0 = pi(t).

2: At robot i, at each time instant t, solve the optimiza-

tion problem (8) to obtain r
(t)
i,h, i = 1, 2, . . . , Nv.

3: Let {r(t)i,1}t=0,1,... be the planned trajectory.

3.3 Algorithm analysis

To analyze the convergence of Algorithm 1, we assume that

each robot can track its reference, i.e. pi(t+ 1) = r
(t)
i,1.

Proposition 1. For µ ∈ (0, 1), suppose that the optimiza-
tion problem (8) is feasible for all t. Then, the robot i
reaches its destination pFi as t increases.

Proof: To begin with, let Ji,k = f
(k)
i,des. From (8d), we have

Ji,k ≤ γJi,k−1 + β
(k)
i µk

i , where β
(k)
i is a solution to the

optimization problem (8). Taking the summation of both

sides of the inequality from 0 to k and noting that β
(k)
i is

upper bounded by β̄, one has (1 − γ)
k

t=0 Ji,t ≤ Ji,0 +

β̄
1−µk

i

1−µi
. Through the limits, we have

∞
t=0 Ji,t ≤ Ji,0

1−γ +
β̄

(1−γ)(1−µi)
, which implies that lim

t→∞
Ji,t = 0, lim

t→∞
∥r(t)i,0 −

pFi
∥2 = 0 for all i ∈ V. ■

Unlike the other works on online distributed trajectory
planning (Van Parys and Pipeleers, 2017; Park et al.,
2022), our paper discusses the convergence analysis of
the designed planning algorithm by introducing (8d). The
presence of the term βµk plays an important role as a
relaxation for the constraint Ji,k ≤ γJi,k−1. Moreover, in

the case r
(t−1)
i,Nh

̸= r
(t)
i,0 , the asymptotic convergence of Ji,k

is not guaranteed. Hence, we can select µ = 1 to keep Ji,k
bounded instead of zero-convergence.

Finding a solution to the optimization problem (8) plays
the most important role in Algorithm 1. However, different
from the local constraints (8b) and (8d), the coupling
constraint (8c) points out the difficulties in deploying the
optimization (8) parallely. As a result, we will present how
to solve such a problem in a distributed manner in the next
section.

4. DISTRIBUTED COMPUTATION FRAMEWORK

This section presents an algorithm based on ADMM to
solve the optimization problem (8) in a fully distributed

manner. For each robot, let ξ
(t)
ij,h ∈ R2 be a predicted (or

virtual) position of robot j at a predictive step h ∈ H =

{1, 2, . . . , Nh} calculated by robot i for all j ∈ N (t)
i . By

taking advantage of the consensus principle, the robot i
can create a replica of the predicted trajectory of robot j

by ξ
(t)
ij . The superscript (t) will be removed to lighten the

notation afterward.

At the beginning, the objective function (8a) is rewritten
in the consensus form

min
r
(t)

i,h
,β

(t)
i

,v
(t)

i,h
,ϕ

(t)

i,h

Nv∑
i=1

fi(ri,h, βi, vi,h, ωi,h) (9a)

s.t. ri,h − ξji,h = 0, ∀j ∈ Ni, (9b)
(
ri,h−ξij,h

)⊤
uij,h ≥ 2R+ ε, ∀j ∈ Ni, (9c)

(2a), (2b) and (3), i ∈ V, h ∈ H. (9d)

Note that ξji,h ̸= ξij,h. Now, we establish affine approx-
imations for nonlinear parts of (2a) and (2b) after each
replanning step. Consider the first-order Taylor-series ex-
pansion of nonlinear terms vi,h cosϕi,h+1 and vi,h sinϕi,h+1

around v∗i,h and ϕ∗
i,h+1 as follow

ci,h = v∗i,h cosϕ
∗
i,h+1+

(
v−v∗i,h

)
cosϕ∗

i,h+1

−
(
ϕ−ϕ∗

i,h+1

)
v∗i,h sinϕ

∗
i,h+1, (10a)

si,h = v∗i,h sinϕ
∗
i,h+1+

(
v−v∗i,h

)
sinϕ∗

i,h+1

+
(
ϕ−ϕ∗

i,h+1

)
v∗i,h cosϕ

∗
i,h+1, (10b)

in which v∗i,h and ϕ∗
i,h+1 are linearization points for h-

predicted step determined by solving the following opti-
mization problem: for H − 1 ≥ h ≥ 1,

[v∗i,h, ϕ
∗
i,h+1]

⊤ = argmin
v,ϕ

{(
x
(t−1)
i,h+1−x

(t−1)
i,h −τv cosϕ

)2

+ (y
(t−1)
i,h+1−y

(t−1)
i,h −τv sinϕ)2

+
ρv
2
(v−v

(t−1)
i,h )2+

ρϕ
2
(ϕ−ϕ

(t−1)
i,h+1)

2
}
, (11)

with positive constants ρv and ρϕ. It should be noted that
the linearization points v∗i,0 and ϕ∗

i,1 should be the current
velocity and heading angle. Differing from previous studies
on MPC for multiple nonholonomic motions where the
predicted values are directly used in the next linearization,
our work here is to find the closest point to nonholonomic
motion in prediction v∗i,h, ϕ

∗
i,h+1 instead of predicted point

v
(t−1)
i,h , ϕ

(t−1)
i,h+1 in the previous step. Then, based on (10),

the linearized constraints for (2a) and (2b) are given by

Algorithm 2 ADMM-based algorithm

Input: Number of robots Nv, radius R; primal resid-
ual error ϵpri, penalty parameter ρ, maximum ADMM
iteration number nmax, and ξii,0.
Output: ri,h for h = 1, 2, . . . , H.

1: Initiate: λ0
ij,h = 0, ξ0ij,h = p(t)

2: Determine linearization points by (11)
3: for n = 1, 2, . . . , nmax do
4: Robot i sends ξn−1

ij,h to j and gathers ξn−1
ji,h from its

neighbors; solve (15) to obtain rni , v
n
i and ϕn

i .

5: Robot i sends 1
ρλ

n−1
ij +rni to j and gathers 1

ρλ
n−1
ji +

rnj from its neighbors; calculate ξnij,h by (16).

6: if
∑

j∈Ni

∑H
h=1 ∥ξ

n+1
ij,h − rn+1

i,h ∥2 < ϵpri then

7: return rn+1
i,h .

8: else
9: Calculate λn+1

ij,h by (14c).
10: end if
11: end for

xi,h+1 = xi,h + τci,h (vi,h, ϕi,h) , (12a)

yi,h+1 = yi,h + τsi,h (vi,h, ϕi,h) . (12b)

On the other side, the augmented Lagrangian of the
optimization problem (9a) is given by:

L =

Nv∑
i=1

Li(ri,h, βi, vi,h, ϕi,h, ξji,h,λij,h), (13)

where Li = fi+
∑

j∈Ni

∑Nh

h=1
λ⊤
ij,h

(
ri,h−ξji,h

)
+ρ

2

∥∥ri,h−ξji,h

∥∥2

2
.

According to Boyd et al. (2011), the ADMM-based al-
gorithm for the convexified optimization problem (13) is
formulated in

[rn+1,βn+1,vn+1,ϕn+1]⊤

= argmin
s.t. (3), (12)

L(r,β,v,ϕ, ξn,λn), (14a)

ξn+1 = argmin
s.t. (9c)

L(rn+1,βn+1,vn+1,ϕn+1, ξ,λn), (14b)

λn+1
ij,h = λn

ij,h + ρ
(
rn+1
i,h − ξn+1

ji,h

)
, (14c)

where r, β, v and ϕ stand for combined vectorizations
corresponding to ri,h, βi, vi,h, ϕi,h, ξji,h, and λij,h. The
sub-optimizations (14a) and (14b) are rewritten as

[rn+1
i,h , βn+1

i,h , vn+1
i,h , ϕn+1

i,h ]⊤ =

argmin
s.t. (3),(12)

fi+
∑
j∈Ni

Nh∑
h=1

ρ

2

∥∥∥∥ri,h−ξnji,h+
1

ρ
λn
ij,h

∥∥∥∥
2

2

, (15)

ξn+1
ij,h = argmin

s.t. (9c)

∑
j∈Ni

Nh∑
h=1

∥∥∥∥rn+1
j,h −ξij,h+

1

ρ
λn
ji,h

∥∥∥∥
2

2

. (16)

The solving process is summarized in Algorithm 2. As
can be seen from Algorithm 2 that large-scale non-convex
optimization problem (OP) (8d) is solved approximately
by local non-convex OP (11) and convex OP (14c).

Convergence analysis: After the linearization of non-
holonomic constraints (11), the optimization problem (9)
has become strictly convex. Then, for both algorithms,
their convergences are ensured by preceding work (Boyd
et al., 2011) if the optimization problem is feasible.
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Fig. 1. Snapshots of trajectories of all the robots in the first scenario
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Fig. 2. Snapshots of trajectories of all the robots in the second scenario

5. NUMERICAL EXAMPLES

To demonstrate the effectiveness of the proposed algo-
rithm, we conducted two numerical examples of 4 robots
moving in an interest space S = {(x, y) ∈ R2 | 0 ≤
x, y ≤ 10}. In the first scenario, four robots are located
at one corner of the space at time step 1 as shown in
Fig. 1a. However, in the second scenario, at the beginning
of navigation, each robot is placed at one corner of the
environment as illustrated in Fig. 2a. It is noted that
the desired positions for the robots in two scenarios were
set differently. We set the sampling time τ = 0.1[s], the
radius of a robot R = 0.3, the safety distance ε = 0.1,
and the prediction horizon H = 8 and H = 10 in both
scenarios, respectively. To run the ADMM algorithm, we
set Nmax = 100 and ϵpri = 0.01.

In the first scenario, four robots are colored yellow, pink,
red and aquamarine. The desired final positions of the
four robots are interchanged, i.e., the yellow (aquamarine)
robot swaps its position with that of the pink (red) robot.
Furthermore, the final destinations of the four robots are
also moved to another places. These swapped positions
between the initial and final positions possibly cause
collision among the four robots when reaching their desired
places. Thanks to Algorithm 1, the four robots successfully
completed their mission to reach the desired destination
points as illustrated in Fig. 1j. In Figures 1c-1e, they
moved very closely to others but they could still find
the optimal trajectories to reach the destinations without
colliding each other.

In the second scenario, the destinations of the four robots
are organized such that the yellow (red) robot swaps its
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Fig. 1. Snapshots of trajectories of all the robots in the first scenario
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Fig. 2. Snapshots of trajectories of all the robots in the second scenario

5. NUMERICAL EXAMPLES

To demonstrate the effectiveness of the proposed algo-
rithm, we conducted two numerical examples of 4 robots
moving in an interest space S = {(x, y) ∈ R2 | 0 ≤
x, y ≤ 10}. In the first scenario, four robots are located
at one corner of the space at time step 1 as shown in
Fig. 1a. However, in the second scenario, at the beginning
of navigation, each robot is placed at one corner of the
environment as illustrated in Fig. 2a. It is noted that
the desired positions for the robots in two scenarios were
set differently. We set the sampling time τ = 0.1[s], the
radius of a robot R = 0.3, the safety distance ε = 0.1,
and the prediction horizon H = 8 and H = 10 in both
scenarios, respectively. To run the ADMM algorithm, we
set Nmax = 100 and ϵpri = 0.01.

In the first scenario, four robots are colored yellow, pink,
red and aquamarine. The desired final positions of the
four robots are interchanged, i.e., the yellow (aquamarine)
robot swaps its position with that of the pink (red) robot.
Furthermore, the final destinations of the four robots are
also moved to another places. These swapped positions
between the initial and final positions possibly cause
collision among the four robots when reaching their desired
places. Thanks to Algorithm 1, the four robots successfully
completed their mission to reach the desired destination
points as illustrated in Fig. 1j. In Figures 1c-1e, they
moved very closely to others but they could still find
the optimal trajectories to reach the destinations without
colliding each other.

In the second scenario, the destinations of the four robots
are organized such that the yellow (red) robot swaps its

position with that of the aquamarine (red) robot. This
setup requires that all the robots meet at the center, where
collision among the robots highly possibly occurs as shown
in Figures 2c-2d due to the fact that the nonholonomic
constraint of each robot limits its motion. However, the
robots were still be able to manage to reach the final
destinations as demonstrated in Fig. 2j.

6. CONCLUDING REMARKS

The paper has proposed a distributed MPC algorithm in
planning trajectories in real time for multiple nonholo-
nomic mobile robots. Our proposed method first calculates
linearization points for convexifying the next predictions,
which can be used for establishing collision avoidance.
It then computes the nominal points, incorporating both
linear and angular velocities based on the predicted posi-
tions. Finally, a convex distributed optimization approach
using ADMM is deployed for each robot, enabling real-
time implementations. The simulation results demonstrate
the potential of the proposed algorithm in practice.

REFERENCES

Alrifaee, B., Maczijewski, J., and Abel, D. (2017). Se-
quential convex programming MPC for dynamic vehicle
collision avoidance. In 2017 IEEE Conf. Control Tech-
nology and Applications (CCTA), 2202–2207.

Binh, N.T., Dai, P.D., Quang, N.H., Ty, N.T., and Hung,
N.M. (2021). Flocking control for two-dimensional
multiple agents with limited communication ranges. Int.
Journal of Control, 94(9), 2411–2418.

Boyd, S., Parikh, N., and Chu, E. (2011). Distributed
optimization and statistical learning via the alternating
direction method of multipliers. Now Publishers Inc.

Camacho, E.F. and Alba, C.B. (2013). Model predictive
control. Springer Science & Business Media.

Garg, K., Arabi, E., and Panagou, D. (2022). Fixed-time
control under spatiotemporal and input constraints: A
quadratic programming based approach. Automatica,
141, 110314.

Katriniok, A., Sopasakis, P., Schuurmans, M., and Pa-
trinos, P. (2019). Nonlinear Model Predictive Control
for Distributed Motion Planning in Road Intersections
Using PANOC. In 2019 IEEE 58th Conf. Decision and
Control (CDC), 5272–5278.

Lafmejani, A.S. and Berman, S. (2021). Nonlinear MPC
for collision-free and deadlock-free navigation of mul-
tiple nonholonomic mobile robots. Robotics and Au-
tonomous Systems, 141, 103774.

LaValle, S.M. (2006). Planning algorithms. Cambridge
University Press.

Le, V.A., Nguyen, L., and Nghiem, T.X. (2021a). ADMM-
Based Adaptive Sampling Strategy for Nonholonomic
Mobile Robotic Sensor Networks. IEEE Sensors Jour-
nal, 21(13), 15369–15378.

Le, V.A., Nguyen, L., and Nghiem, T.X. (2021b). An Effi-
cient Adaptive Sampling Approach for Mobile Robotic
Sensor Networks using Proximal ADMM. In 2021 Amer-
ican Control Conf. (ACC), 1101–1106.

Le, V.A., Nguyen, L., and Nghiem, T.X. (2022). Multistep
Predictions for Adaptive Sampling in Mobile Robotic
Sensor Networks Using Proximal ADMM. IEEE Access,
10, 64850–64861.
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