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Motivation

Several cyber incidents on Cyber-physical systems in the past

1 DoS attack on the Ukrainian power grid in 2015.
2 Data injection attack on Kemuri water distribution

company in 2016.
3 . . . and many more.

Lesson: Be proactive and protect the system, even uncertain
system modeling
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Problem description

The main research question
Given an uncertain networked control system (multi-agent
system) under cyber-attacks, how to place a sensor at an agent
s.t. minimizing the risk on a given local performance.

December 2022
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System description

• Undirected connected graph G with N agents

ẋ∆i (t) =
∑

vj∈Ni

ℓ∆ij
(
x∆i (t)− x∆j (t)

)
+ ũi(t), vi ∈

{
v1, v2, . . . , vN

}
,

y∆τ (t) = x∆τ (t),

• Healthy/Attacked local controller

ũi(t) = −θ∆i x∆i (t) +

{
0, if vi is healthy
a(t), if vi is attacked

• Healthy closed-loop model (a(t) = 0)

ẋ∆(t) = −L∆x∆(t), L∆ ≜ L̄+∆, ∆ ∈ Ω.

Assume that Ω is a compact set.

December 2022
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Detector and Adversary description

• Revisit: Undirected connected graph G (vertex set V, edge
set E , L∆), protected target vertex vτ , and closed-loop healthy
system

ẋ∆(t) = −L∆x∆(t), L∆ ≜ L̄+∆, ∆ ∈ Ω.

• Prior information
Know : Sets V, E , Ω; location vτ ; nominal L̄.
Don’t know : ∆; their rivals’ exact actions.

December 2022
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Detector and Adversary Purpose

• Fixed local performance at protected vertex vτ : ∥yτ∥2L2[0,T ]

• Adversary purpose
Choose va ∈ V \ {vτ}; design a(t) as stealthy

∥∥y∆m∥∥2
L2[0,T ]

≤ σ

And maximize ∥yτ∥2L2[0,T ] where ũa(t) = ua(t) + a(t)

• Detector purpose:
Choose vm ∈ V \ {vτ} to detect cyber-attack

∥∥y∆m∥∥2
L2[0,T ]

> σ

And ∥yτ∥2L2[0,T ] as low as possible

December 2022
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Risk on local performance

• Worst-case attack impact on local performance

sup
a∈L2[0,T ]

Jτ (va, vm; ∆, a),

Jτ (va, vm; ∆, a) ≜
∥∥y∆τ ∥∥2

L2[0,T ]
IA(a),

A ≜ {a|
∥∥y∆m∥∥2

L2[0,T ]
≤ σ, x(0) = 0},

Difficulty: ∆ ∈ Ω is uncertain to both detector and adversary.
• Risk metric - Value at Risk (VaRβ) over uncertainty set Ω

Jτ (va, vm) = VaRβ,Ω

[
sup

a∈L2[0,T ]
Jτ (va, vm; ∆, a)

]

Illustrate VaR →

December 2022
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Value at Risk

Figure: Risk metrics

December 2022
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Problem formulation

Problem formulation (zero-sum game)
Given protected target vertex vτ , game payoff Jτ (va, vm)

min
vm ̸=vτ∈V

max
va ̸=vτ∈V

Jτ (va, vm).

The detector and the adversary satisfy1

−∞ < Jτ (va, v
⋆
m) ≤Jτ (v

⋆
a, v

⋆
m) ≤ Jτ (v

⋆
a, vm) < ∞,

∀va, vm ∈ V \ {vτ}.

1Zhu, Q., & Basar, T. (2015). Game-theoretic methods for robustness,
security, and resilience of cyberphysical control systems: games-in-games
principle for optimal cross-layer resilient control systems. IEEE Control
Systems Magazine, 35(1), 46-65.

December 2022
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Approximating game payoff

• Uncertainty set Ω, take M1 sampled uncertainty values
∆i ∈ Ω, i = {1, 2, . . . ,M1}

Theorem 4.1
Let ϵ1, β1 ∈ (0, 1) be chosen such that

P{|PΩ(X < γ)− P̂M1 | > ϵ1} ≤ β1

where P̂M1 ≜ 1
M1

∑M1
i=1 I (X ≤ γ) , where M1 ≥ 1

2ϵ21
log 2

β1
.

Then, VaRβ with an accuracy ϵ1 and confidence β1 by

γ̂ ≜ min γ

s.t. P̂M1 ≥ 1− β.

• Q: Should we evaluate M1 game payoff values?

December 2022
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Evaluating game payoff

• We only need to evaluate ⌈M1(1− β1)⌉ values (Lemma 4.2)
E.g., ϵ1 = 0.06, β1 = 0.08, M1 ≥ 450 ⇒ evaluate 414 values

• Worst-case attack impact with a sampled uncertainty ∆i.

γ⋆i ≜ sup
a∈L2[0,T ]

∥∥y∆i
τ

∥∥2
s.t.

∥∥y∆i
m

∥∥2 ≤ σ

• Solved via LMIs2

• Always have γ⋆i < ∞ ?
• Invariant zeros3 of Σm = (−L∆i , ea, e

⊤
m, 0) where y∆i

m (t) is
its output: unstable finite and infinite

2Ferrari, R. M., & Teixeira, A. M. (Eds.). (2021). Safety, Security and
Privacy for Cyber-Physical Systems. Cham: Springer.

3Teixeira, A. et al. (2015). Strategic stealthy attacks: the
output-to-output ℓ2-gain. 54th IEEE CDC

December 2022
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Invariant zeros

• Consider invariant zeros of Σm = (A,B,Cm, 0) where ym(t)
is its output.[

λI −A −B
Cm 0

] [
x̄
g

]
=

[
0
0

]
, x̄ ̸= 0. (1)

• Finite invariant zeros λ < ∞
Lemma 4.4 (choice of parameters)
Finite invariant zeros of Σm can be shifted to LHP by local
controllers.

• Infinite invariant zeros λ = 1/s where s = 0 satisfies (1)

Relative degree rΣ of a linear system Σ

Σm has output ym(t) and Στ has output yτ (t)

r Σm ≤ r Στ

December 2022
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Numerical examples

Two cases of
Value-at-Risk
VaRβ where
1) β = 0.08
2) β = 0.15

What are the best
choices for the
detector and the
adversary?
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Numerical examples

• Case 1 (Box A): β = 0.08

J5(∀va ∈ V \ {v5, v10}, vm=6)

< J5(va=10, vm=6)

< J5(va=10, vm=2).

• Case 2 (Box B): β = 0.15

J5(va=1, vm=2) = 1.4603,

J5(va=10, vm=6) = 1.4803,

J5(va=1, vm=6) = 1.4856,

J5(va=10, vm=2) = 1.5550.

P⋆(vm=6) ≈ 94.72%, P⋆(vm=2) ≈ 5.28%,

P⋆(va=10) ≈ 25.29%, P⋆(va=1) ≈ 74.71%,

P⋆(∀va ∈ V \ {1, 5, 10}) = 0%.

December 2022
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P⋆(va=10) ≈ 25.29%, P⋆(va=1) ≈ 74.71%,

P⋆(∀va ∈ V \ {1, 5, 10}) = 0%.
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Conclusions

We considered uncertain networked control systems under
cyber-attacks
The problem was formulated through zero-sum game
framework
We evaluated and computed the risk to find optimal
sensor placement
We illustrated the proposed method through a numerical
example

anh.tung.nguyen@it.uu.se

Questions!!!
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