A Zero-Sum Game Framework for Optimal Sensor Placement in Uncertain Networked Control Systems under Cyber-Attacks

Anh Tung Nguyen, Sribalaji C. Anand, and André Teixeira Uppsala University, Sweden IEEE Conference on Decision and Control Cancún, Mexico, December 2022

ERI

Swedish Research Council

Stiftelsen för Strategisk Forskning

Outline

Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions

1 Motivation

Problem Description

3 Problem Formulation

Proposed method

5 Numerical examples

6 Conclusions

Outline

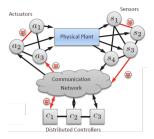
Motivation

- Problem Description
- Problem Formulation
- Proposed method
- Numerical examples
- Conclusions

Motivation

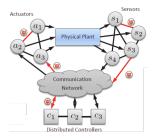
- Problem Description
- **3** Problem Formulation
- Proposed method
- **5** Numerical examples
- 6 Conclusions

- Problem Description
- Problem Formulation
- Proposed method
- Numerical examples
- Conclusions



Several cyber incidents on Cyber-physical systems in the past

- Problem Description
- Problem Formulation
- Proposed method
- Numerical examples
- Conclusions



Several cyber incidents on Cyber-physical systems in the past

- **1** DoS attack on the Ukrainian power grid in 2015.
- **2** Data injection attack on Kemuri water distribution company in 2016.
- **3** . . . and many more.

- Problem Description
- Problem Formulation
- Proposed method
- Numerical examples
- Conclusions

Actuators A(uators) a_2 a_3 a_2 a_3 a_2 a_3 a_2 a_3 a_3 a_3 a_4 a_5 a_5 a_5

Several cyber incidents on Cyber-physical systems in the past

- 1 DoS attack on the Ukrainian power grid in 2015.
- **2** Data injection attack on Kemuri water distribution company in 2016.
- 3 ... and many more.

Lesson: Be proactive and protect the system, even uncertain system modeling

Outline

Motivation

Problem Description

- Problem Formulation
- Proposed method
- Numerical examples
- Conclusions

Motivation

2 Problem Description

- Problem Formulation
- Proposed method
- 5 Numerical examples
- 6 Conclusions

Problem description

The main research question

Motivation

Problem Description

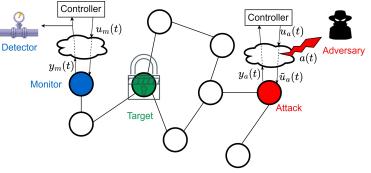
Problem Formulation

Proposed method

Numerical examples

Conclusions

Given an uncertain networked control system (multi-agent system) under cyber-attacks, how to place a sensor at an agent s.t. minimizing the risk on a given local performance.



System description

 \bullet Undirected connected graph ${\mathcal G}$ with N agents

Motivation

Problem Description

- Problem Formulation
- Proposed method
- Numerical examples
- Conclusions

 $\dot{x}_i^{\Delta}(t) = \sum_{v_j \in \mathcal{N}_i} \ell_{ij}^{\Delta} \left(x_i^{\Delta}(t) - x_j^{\Delta}(t) \right) + \tilde{u}_i(t), \ v_i \in \left\{ v_1, v_2, \dots, v_N \right\},$ $u_{\sigma}^{\Delta}(t) = x_{\sigma}^{\Delta}(t).$

• Healthy/Attacked local controller

$$\tilde{u}_i(t) = -\theta_i^{\Delta} x_i^{\Delta}(t) + \begin{cases} 0, & \text{if } v_i \text{ is healthy} \\ a(t), & \text{if } v_i \text{ is attacked} \end{cases}$$

System description

 \bullet Undirected connected graph ${\mathcal G}$ with N agents

Motivation

Problem Description

- Problem Formulation
- Proposed method
- Numerical examples
- Conclusions

 $\dot{x}_i^{\Delta}(t) = \sum_{v_j \in \mathcal{N}_i} \ell_{ij}^{\Delta} \left(x_i^{\Delta}(t) - x_j^{\Delta}(t) \right) + \tilde{u}_i(t), \ v_i \in \left\{ v_1, v_2, \dots, v_N \right\},$ $u_{\pi}^{\Delta}(t) = x_{\pi}^{\Delta}(t).$

• Healthy/Attacked local controller

$$\tilde{u}_i(t) = -\theta_i^{\Delta} x_i^{\Delta}(t) + \begin{cases} 0, & \text{if } v_i \text{ is healthy} \\ a(t), & \text{if } v_i \text{ is attacked} \end{cases}$$

• Healthy closed-loop model (a(t) = 0)

$$\dot{x}^{\Delta}(t) = -L^{\Delta}x^{\Delta}(t), \quad L^{\Delta} \triangleq \bar{L} + \Delta, \quad \Delta \in \Omega.$$

Assume that Ω is a compact set.

Detector and Adversary description

Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions

• **Revisit**: Undirected connected graph \mathcal{G} (vertex set \mathcal{V} , edge set \mathcal{E} , L^{Δ}), protected target vertex v_{τ} , and closed-loop healthy system

$$\dot{x}^{\Delta}(t) = -L^{\Delta}x^{\Delta}(t), \quad L^{\Delta} \triangleq \bar{L} + \Delta, \quad \Delta \in \Omega.$$

Detector and Adversary description

Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions

• **Revisit**: Undirected connected graph \mathcal{G} (vertex set \mathcal{V} , edge set \mathcal{E} , L^{Δ}), protected target vertex v_{τ} , and closed-loop healthy system

$$\dot{x}^{\Delta}(t) = -L^{\Delta}x^{\Delta}(t), \quad L^{\Delta} \triangleq \bar{L} + \Delta, \quad \Delta \in \Omega.$$

• Prior information Know: Sets \mathcal{V} , \mathcal{E} , Ω ; location v_{τ} ; nominal \overline{L} . Don't know: Δ ; their rivals' exact actions.

Detector and Adversary Purpose

Motivation

Problem Description

- Problem Formulation
- Proposed method
- Numerical examples
- Conclusions

• Fixed local performance at protected vertex $v_{ au}$: $\|y_{ au}\|^2_{\mathcal{L}_2[0,T]}$

Detector and Adversary Purpose

Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions

- Fixed local performance at protected vertex $v_{ au}$: $\|y_{ au}\|^2_{\mathcal{L}_2[0,T]}$
- Adversary purpose

Choose $v_a \in \mathcal{V} \setminus \{v_\tau\}$; design a(t) as stealthy $\|y_m^{\Delta}\|_{\mathcal{L}_2[0,T]}^2 \leq \sigma$ And maximize $\|y_\tau\|_{\mathcal{L}_2[0,T]}^2$ where $\tilde{u}_a(t) = u_a(t) + a(t)$

Detector and Adversary Purpose

Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions

• Fixed local performance at protected vertex $v_{\tau} {:} ~ \left\|y_{\tau}\right\|^2_{\mathcal{L}_2[0,T]}$

• Adversary purpose

Choose $v_a \in \mathcal{V} \setminus \{v_\tau\}$; design a(t) as stealthy $\|y_m^{\Delta}\|_{\mathcal{L}_2[0,T]}^2 \leq \sigma$ And maximize $\|y_\tau\|_{\mathcal{L}_2[0,T]}^2$ where $\tilde{u}_a(t) = u_a(t) + a(t)$

• Detector purpose:

Choose $v_m \in \mathcal{V} \setminus \{v_\tau\}$ to detect cyber-attack $\|y_m^{\Delta}\|_{\mathcal{L}_2[0,T]}^2 > \sigma$ And $\|y_\tau\|_{\mathcal{L}_2[0,T]}^2$ as low as possible

Outline

Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions

Motivation

Problem Description

3 Problem Formulation

Proposed method

5 Numerical examples

6 Conclusions

• Worst-case attack impact on local performance

Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions

$$\begin{split} \sup_{\boldsymbol{a}\in\mathcal{L}_{2}[0,T]} &J_{\tau}(\boldsymbol{v}_{\boldsymbol{a}},\boldsymbol{v}_{m};\boldsymbol{\Delta},\boldsymbol{a}),\\ &J_{\tau}(\boldsymbol{v}_{\boldsymbol{a}},\boldsymbol{v}_{m};\boldsymbol{\Delta},\boldsymbol{a}) \triangleq \left\|\boldsymbol{y}_{\tau}^{\boldsymbol{\Delta}}\right\|_{\mathcal{L}_{2}[0,T]}^{2} \mathbb{I}_{\mathcal{A}}(\boldsymbol{a}),\\ &\mathcal{A} \triangleq \left\{\boldsymbol{a}\right\} \left\|\boldsymbol{y}_{m}^{\boldsymbol{\Delta}}\right\|_{\mathcal{L}_{2}[0,T]}^{2} \leq \sigma, \ \boldsymbol{x}(0) = 0 \right\}, \end{split}$$

• Worst-case attack impact on local performance

Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions

$$\begin{split} \sup_{\boldsymbol{a}\in\mathcal{L}_{2}[0,T]} &J_{\tau}(\boldsymbol{v}_{\boldsymbol{a}},\boldsymbol{v}_{m};\boldsymbol{\Delta},\boldsymbol{a}),\\ &J_{\tau}(\boldsymbol{v}_{\boldsymbol{a}},\boldsymbol{v}_{m};\boldsymbol{\Delta},\boldsymbol{a}) \triangleq \left\|\boldsymbol{y}_{\tau}^{\boldsymbol{\Delta}}\right\|_{\mathcal{L}_{2}[0,T]}^{2} \mathbb{I}_{\mathcal{A}}(\boldsymbol{a}),\\ &\mathcal{A} \triangleq \left\{\boldsymbol{a}\right\} \left\|\boldsymbol{y}_{m}^{\boldsymbol{\Delta}}\right\|_{\mathcal{L}_{2}[0,T]}^{2} \leq \sigma, \ \boldsymbol{x}(0) = 0 \right\}, \end{split}$$

Difficulty: $\Delta \in \Omega$ is uncertain to both detector and adversary.

• Worst-case attack impact on local performance

Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions

 $\sup_{\boldsymbol{a}\in\mathcal{L}_{2}[0,T]} J_{\tau}(\boldsymbol{v}_{\boldsymbol{a}},\boldsymbol{v}_{\boldsymbol{m}};\Delta,\boldsymbol{a}),$ $J_{\tau}(\boldsymbol{v}_{\boldsymbol{a}},\boldsymbol{v}_{\boldsymbol{m}};\Delta,\boldsymbol{a}) \triangleq \left\|\boldsymbol{y}_{\tau}^{\Delta}\right\|_{\mathcal{L}_{2}[0,T]}^{2} \mathbb{I}_{\mathcal{A}}(\boldsymbol{a}),$ $\mathcal{A} \triangleq \{\boldsymbol{a} \mid \left\|\boldsymbol{y}_{\boldsymbol{m}}^{\Delta}\right\|_{\mathcal{L}_{2}[0,T]}^{2} \leq \sigma, \ \boldsymbol{x}(0) = 0\},$

Difficulty: $\Delta \in \Omega$ is uncertain to both detector and adversary. • Risk metric - Value at Risk (VaR_{β}) over uncertainty set Ω

$$\mathcal{J}_{\tau}(\underline{v_{a}}, v_{m}) = \mathsf{VaR}_{\beta, \Omega} \Big[\sup_{a \in \mathcal{L}_{2}[0, T]} J_{\tau}(\underline{v_{a}}, v_{m}; \Delta, a) \Big]$$

• Worst-case attack impact on local performance

Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions

 $\sup_{\boldsymbol{a}\in\mathcal{L}_{2}[0,T]} J_{\tau}(\boldsymbol{v}_{\boldsymbol{a}},\boldsymbol{v}_{\boldsymbol{m}};\Delta,\boldsymbol{a}),$ $J_{\tau}(\boldsymbol{v}_{\boldsymbol{a}},\boldsymbol{v}_{\boldsymbol{m}};\Delta,\boldsymbol{a}) \triangleq \left\|\boldsymbol{y}_{\tau}^{\Delta}\right\|_{\mathcal{L}_{2}[0,T]}^{2} \mathbb{I}_{\mathcal{A}}(\boldsymbol{a}),$ $\mathcal{A} \triangleq \{\boldsymbol{a} \mid \left\|\boldsymbol{y}_{\boldsymbol{m}}^{\Delta}\right\|_{\mathcal{L}_{2}[0,T]}^{2} \leq \sigma, \ \boldsymbol{x}(0) = 0\},$

Difficulty: $\Delta \in \Omega$ is uncertain to both detector and adversary. • Risk metric - Value at Risk (VaR_{β}) over uncertainty set Ω

$$\mathcal{J}_{\tau}(\underline{v_{a}}, v_{m}) = \mathsf{VaR}_{\beta, \Omega} \Big[\sup_{a \in \mathcal{L}_{2}[0, T]} J_{\tau}(\underline{v_{a}}, v_{m}; \Delta, a) \Big]$$

Illustrate VaR \rightarrow

Value at Risk

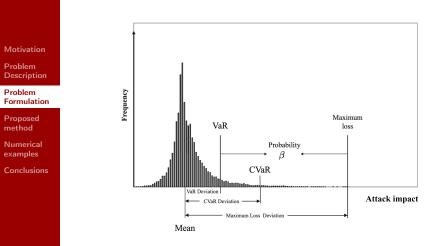


Figure: Risk metrics

Problem formulation

Problem formulation (zero-sum game)

Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions

Given protected target vertex v_{τ} , game payoff $\mathcal{J}_{\tau}(v_a, v_m)$

 $\min_{v_m \neq v_\tau \in \mathcal{V}} \max_{v_a \neq v_\tau \in \mathcal{V}} \mathcal{J}_\tau(v_a, v_m).$

¹Zhu, Q., & Basar, T. (2015). Game-theoretic methods for robustness, security, and resilience of cyberphysical control systems: games-in-games principle for optimal cross-layer resilient control systems. IEEE Control Systems Magazine, 35(1), 46-65.

Problem formulation

Problem formulation (zero-sum game)

Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions

Given protected target vertex $v_{ au}$, game payoff $\mathcal{J}_{ au}(v_a, v_m)$

 $\min_{v_m \neq v_\tau \in \mathcal{V}} \max_{v_a \neq v_\tau \in \mathcal{V}} \mathcal{J}_\tau(v_a, v_m).$

The detector and the adversary satisfy¹

$$-\infty < \mathcal{J}_{\tau}(v_a, v_m^{\star}) \leq \mathcal{J}_{\tau}(v_a^{\star}, v_m^{\star}) \leq \mathcal{J}_{\tau}(v_a^{\star}, v_m) < \infty,$$
$$\forall v_a, v_m \in \mathcal{V} \setminus \{v_{\tau}\}.$$

 $^1 Zhu, Q., \&$ Basar, T. (2015). Game-theoretic methods for robustness, security, and resilience of cyberphysical control systems: games-in-games principle for optimal cross-layer resilient control systems. IEEE Control Systems Magazine, 35(1), 46-65. $^{10/4}$

Outline

Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions

1 Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

6 Conclusions

Approximating game payoff

Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions

• Uncertainty set $\Omega,$ take M_1 sampled uncertainty values $\Delta_i\in\Omega,\ i=\{1,2,\ldots,M_1\}$

Theorem 4.1

Let $\epsilon_1,\beta_1\in(0,1)$ be chosen such that

$$\mathbb{P}\{|\mathbb{P}_{\Omega}(X < \gamma) - \hat{\mathbb{P}}_{M_1}| > \epsilon_1\} \le \beta_1$$

where $\hat{\mathbb{P}}_{M_1} \triangleq \frac{1}{M_1} \sum_{i=1}^{M_1} \mathbb{I}(X \leq \gamma)$, where $M_1 \geq \frac{1}{2\epsilon_1^2} \log \frac{2}{\beta_1}$. Then, VaR_{β} with an accuracy ϵ_1 and confidence β_1 by

$$\hat{\gamma} \triangleq \min \ \gamma$$

s.t. $\hat{\mathbb{P}}_{M_1} \ge 1 - \beta$

Approximating game payoff

Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions

• Uncertainty set $\Omega,$ take M_1 sampled uncertainty values $\Delta_i\in\Omega,\ i=\{1,2,\ldots,M_1\}$

Theorem 4.1

Let $\epsilon_1, \beta_1 \in (0,1)$ be chosen such that

$$\mathbb{P}\{|\mathbb{P}_{\Omega}(X < \gamma) - \hat{\mathbb{P}}_{M_1}| > \epsilon_1\} \le \beta_1$$

where $\hat{\mathbb{P}}_{M_1} \triangleq \frac{1}{M_1} \sum_{i=1}^{M_1} \mathbb{I}(X \leq \gamma)$, where $M_1 \geq \frac{1}{2\epsilon_1^2} \log \frac{2}{\beta_1}$. Then, VaR_{β} with an accuracy ϵ_1 and confidence β_1 by

$$\hat{\gamma} \triangleq \min \ \gamma$$

s.t. $\hat{\mathbb{P}}_{M_1} \ge 1 - \beta$

• Q: Should we evaluate M_1 game payoff values?

Motivation Problem Description Problem Formulation Proposed method Numerical examples Conclusions

Evaluating game payoff

• We only need to evaluate $\lceil M_1(1 - \beta_1) \rceil$ values (Lemma 4.2) E.g., $\epsilon_1 = 0.06$, $\beta_1 = 0.08$, $M_1 \ge 450 \Rightarrow$ evaluate 414 values

²Ferrari, R. M., & Teixeira, A. M. (Eds.). (2021). Safety, Security and Privacy for Cyber-Physical Systems. Cham: Springer. ³Teixeira, A. et al. (2015). Strategic stealthy attacks: the output-to-output ℓ_2 -gain. 54th IEEE CDC 12

```
12/ 16
```


Evaluating game payoff

• We only need to evaluate $\lceil M_1(1 - \beta_1) \rceil$ values (Lemma 4.2) E.g., $\epsilon_1 = 0.06$, $\beta_1 = 0.08$, $M_1 \ge 450 \Rightarrow$ evaluate 414 values

• Worst-case attack impact with a sampled uncertainty Δ_i .

$$egin{array}{ll} \gamma_i^\star & \triangleq & \sup_{a \in \mathcal{L}_2[0,T]} & \left\| y_{ au}^{\Delta_i}
ight\|^2 \ & ext{ s.t. } & \left\| y_m^{\Delta_i}
ight\|^2 \leq \sigma \end{array}$$

²Ferrari, R. M., & Teixeira, A. M. (Eds.). (2021). Safety, Security and Privacy for Cyber-Physical Systems. Cham: Springer. ³Teixeira, A. et al. (2015). Strategic stealthy attacks: the output-to-output ℓ_2 -gain. 54th IEEE CDC 12/

Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions

Conclusions

Problem Description Problem Formulation Proposed method Numerical examples

Evaluating game payoff

• We only need to evaluate $\lceil M_1(1 - \beta_1) \rceil$ values (Lemma 4.2) E.g., $\epsilon_1 = 0.06$, $\beta_1 = 0.08$, $M_1 \ge 450 \Rightarrow$ evaluate 414 values

• Worst-case attack impact with a sampled uncertainty Δ_i .

$$egin{array}{ll} \gamma_i^\star & \triangleq & \sup_{a \in \mathcal{L}_2[0,T]} & \left\| y_{ au}^{\Delta_i}
ight\|^2 \ & ext{ s.t. } & \left\| y_m^{\Delta_i}
ight\|^2 \leq \sigma \end{array}$$

• Solved via LMIs²

²Ferrari, R. M., & Teixeira, A. M. (Eds.). (2021). Safety, Security and Privacy for Cyber-Physical Systems. Cham: Springer. ³Teixeira, A. et al. (2015). Strategic stealthy attacks: the output-to-output ℓ_2 -gain. 54th IEEE CDC 12/

Conclusions

Problem Description Problem Formulation Proposed method Numerical examples

Evaluating game payoff

• We only need to evaluate $\lceil M_1(1 - \beta_1) \rceil$ values (Lemma 4.2) E.g., $\epsilon_1 = 0.06$, $\beta_1 = 0.08$, $M_1 \ge 450 \Rightarrow$ evaluate 414 values

• Worst-case attack impact with a sampled uncertainty Δ_i .

$$egin{array}{ll} \gamma_i^\star & \triangleq & \sup_{a \in \mathcal{L}_2[0,T]} & \left\| y_{ au}^{\Delta_i}
ight\|^2 \ & ext{ s.t. } & \left\| y_m^{\Delta_i}
ight\|^2 \leq \sigma \end{array}$$

- Solved via LMIs²
- Always have $\gamma_i^\star < \infty$?

²Ferrari, R. M., & Teixeira, A. M. (Eds.). (2021). Safety, Security and Privacy for Cyber-Physical Systems. Cham: Springer. ³Teixeira, A. et al. (2015). Strategic stealthy attacks: the output-to-output ℓ_2 -gain. 54th IEEE CDC 12/

Conclusions

Problem Description Problem Formulation Proposed method Numerical examples

Evaluating game payoff

• We only need to evaluate $\lceil M_1(1-\beta_1) \rceil$ values (Lemma 4.2) E.g., $\epsilon_1 = 0.06$, $\beta_1 = 0.08$, $M_1 \ge 450 \Rightarrow$ evaluate 414 values

• Worst-case attack impact with a sampled uncertainty Δ_i .

$$egin{array}{ll} \gamma_i^\star & \triangleq & \sup_{a \in \mathcal{L}_2[0,T]} & \left\| y_{ au}^{\Delta_i}
ight\|^2 \ & ext{ s.t. } & \left\| y_m^{\Delta_i}
ight\|^2 \leq \sigma \end{array}$$

- Solved via LMIs²
- Always have $\gamma_i^\star < \infty$?
- Invariant zeros³ of $\Sigma_m = (-L^{\Delta_i}, e_a, e_m^{\top}, 0)$ where $y_m^{\Delta_i}(t)$ is its output: unstable finite and infinite

 2 Ferrari, R. M., & Teixeira, A. M. (Eds.). (2021). Safety, Security and Privacy for Cyber-Physical Systems. Cham: Springer. 3 Teixeira, A. et al. (2015). Strategic stealthy attacks: the output-to-output ℓ_2 -gain. 54th IEEE CDC \$12

Invariant zeros

 \bullet Consider invariant zeros of $\Sigma_m = (A,B,C_m,0)$ where $y_m(t)$ is its output.

$$\begin{bmatrix} \lambda I - A & -B \\ C_m & 0 \end{bmatrix} \begin{bmatrix} \bar{x} \\ g \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad \bar{x} \neq 0.$$
(1)

Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions

Invariant zeros

 \bullet Consider invariant zeros of $\Sigma_m = (A,B,C_m,0)$ where $y_m(t)$ is its output.

Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions

$$\begin{bmatrix} \lambda I - A & -B \\ C_m & 0 \end{bmatrix} \begin{bmatrix} \bar{x} \\ g \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad \bar{x} \neq 0.$$
 (1)

• Finite invariant zeros λ < ∞

Lemma 4.4 (choice of parameters)

Finite invariant zeros of Σ_m can be shifted to LHP by local controllers.

Invariant zeros

 \bullet Consider invariant zeros of $\Sigma_m = (A,B,C_m,0)$ where $y_m(t)$ is its output.

Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions

$$\begin{bmatrix} \lambda I - A & -B \\ C_m & 0 \end{bmatrix} \begin{bmatrix} \bar{x} \\ g \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad \bar{x} \neq 0.$$
 (1)

• Finite invariant zeros $\lambda~<\infty$

Lemma 4.4 (choice of parameters)

Finite invariant zeros of Σ_m can be shifted to LHP by local controllers.

• Infinite invariant zeros $\lambda = 1/s$ where s = 0 satisfies (1)

Relative degree r_{Σ} of a linear system Σ

 Σ_m has output $y_m(t)$ and Σ_τ has output $y_\tau(t)$

$$r_{\Sigma_m} \leq r_{\Sigma_\tau}$$

Outline

Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions

Motivation

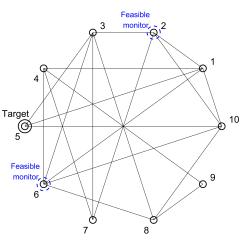
Problem Description

Problem Formulation

Proposed method

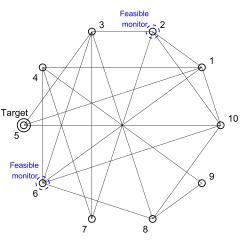
6 Conclusions

- Motivation
- Problem Description
- Problem Formulation
- Proposed method
- Numerical examples
- Conclusions



Two cases of Value-at-Risk VaR $_{\beta}$ where 1) $\beta = 0.08$ 2) $\beta = 0.15$

- Motivation
- Problem Description
- Problem Formulation
- Proposed method
- Numerical examples
- Conclusions



Two cases of Value-at-Risk VaR $_{\beta}$ where 1) $\beta = 0.08$ 2) $\beta = 0.15$ What are the best choices for the detector and the adversary?

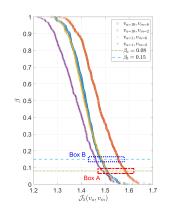
Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions



Case 1 (Box A):
$$\beta = 0.08$$

 $\mathcal{J}_5(\forall v_a \in \mathcal{V} \setminus \{v_5, v_{10}\}, v_{m=6})$
 $< \mathcal{J}_5(v_{a=10}, v_{m=6})$
 $< \mathcal{J}_5(v_{a=10}, v_{m=2}).$

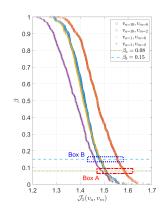
Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions



- Case 1 (Box A): $\beta = 0.08$ $\mathcal{J}_5(\forall v_a \in \mathcal{V} \setminus \{v_5, v_{10}\}, v_{m=6})$ $< \mathcal{J}_5(v_{a=10}, v_{m=6})$ $< \mathcal{J}_5(v_{a=10}, v_{m=2}).$
- Case 2 (Box B): $\beta = 0.15$
 - $\begin{aligned} \mathcal{J}_5(v_{a=1}, v_{m=2}) &= 1.4603, \\ \mathcal{J}_5(v_{a=10}, v_{m=6}) &= 1.4803, \\ \mathcal{J}_5(v_{a=1}, v_{m=6}) &= 1.4856, \\ \mathcal{J}_5(v_{a=10}, v_{m=2}) &= 1.5550. \end{aligned}$

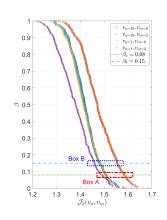
Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions



Case 1 (Box A):
$$\beta = 0.08$$

 $\mathcal{J}_5(\forall v_a \in \mathcal{V} \setminus \{v_5, v_{10}\}, v_{m=6})$
 $< \mathcal{J}_5(v_{a=10}, v_{m=6})$
 $< \mathcal{J}_5(v_{a=10}, v_{m=2}).$

• Case 2 (Box B):
$$\beta = 0.15$$

$$\mathcal{J}_5(v_{a=1}, v_{m=2}) = 1.4603,$$

$$\mathcal{J}_5(v_{a=10}, v_{m=6}) = 1.4803,$$

$$\mathcal{J}_5(v_{a=1}, v_{m=6}) = 1.4856,$$

$$\mathcal{J}_5(v_{a=10}, v_{m=2}) = 1.5550.$$

$$\begin{split} \mathbb{P}^{\star}(v_{m=6}) &\approx 94.72\%, \ \mathbb{P}^{\star}(v_{m=2}) \approx 5.28\%, \\ \mathbb{P}^{\star}(v_{a=10}) &\approx 25.29\%, \ \mathbb{P}^{\star}(v_{a=1}) \approx 74.71\%, \\ \mathbb{P}^{\star}(\forall v_{a} \in \mathcal{V} \setminus \{1, 5, 10\}) = 0\%. \end{split}$$
 15/ 16

Outline

Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions

Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions

Motivation

Problem Description

Problem Formulation

Proposed method

Numerical examples

Conclusions

- We considered uncertain networked control systems under cyber-attacks
- The problem was formulated through zero-sum game framework
- We evaluated and computed the risk to find optimal sensor placement
- We illustrated the proposed method through a numerical example

anh.tung.nguyen@it.uu.se

Questions!!!