

UPPSALA UNIVERSITET

Security Allocation in Networked Control Systems

Anh Tung Nguyen

Dissertation for the degree of Licentiate

October 13, 2023

Stiftelsen för Strategisk Forskning

Swedish Research Council

Outline

Introduction

- 2 Security in Networked Control Systems
- 3 Problem Formulation

4 Contributions

- Paper I
- Paper II
- Paper III
- Paper IV

Critical Infrastructure

Tung Nguyen (UU-IT-SysCon)

Security Allocation in NCSs

October 13, 2023

Control of Critical Infrastructure

3/27

Control of Critical Infrastructure

Control of Critical Infrastructure

Vulnerabilities in Critical Infrastructure

Stuxnet

4 / 27

Vulnerabilities in Critical Infrastructure

Vulnerabilities in Critical Infrastructure

Motivation

Critical Infrastructure should be protected actively

Outline

Introduction

2 Security in Networked Control Systems

3 Problem Formulation

4 Contributions

- Paper I
- Paper II
- Paper III
- Paper IV

Charlie

Outline

Introduction

Problem Formulation

Contributions

- Paper I
- Paper II
- Paper III
- Paper IV

Problem description

Problem description

• Purpose: protect the system

• Purpose: attack the system

- Purpose: protect the system
- Action: monitor what?

- Purpose: attack the system
- Action: attack what?

- Purpose: protect the system
- Action: monitor what?

Action order:

- 1) Make decisions simultaneously
- 2) The defender goes first

- Purpose: attack the system
- Action: attack what?

- Purpose: protect the system
- Action: monitor what?

Action order:

- 1) Make decisions simultaneously
- 2) The defender goes first

Tung Nguyen (UU-IT-SysCon)

Non-cooperative two-player game

Security Allocation in NCSs

- Purpose: attack the system
- Action: attack what?

- Purpose: protect the system
- Action: monitor what?

Action order:

- 1) Make decisions simultaneously
- 2) The defender goes first

- Purpose: attack the system
- Action: attack what?

- System models
- Resources & knowledge
- ▷ Action order

Paper I

- Certain LFO
- Performance ρ is fixed
- Def./Adv. chooses one
- Take actions simultaneously

Paper III

- Certain LSO
- Performance ρ is fixed
- Def./Adv. chooses one
- Take actions simultaneously

Paper II

- Uncertain LFO
- Performance ρ is fixed
- Def./Adv. chooses one
- Take actions simultaneously

Paper IV

- Certain LFO
- Performance ρ is uncertain
- Adv. chooses one, Def. chooses several
- Def. takes action firstly

Defender 2	Adversary Performance ρ
Paper I	Paper II
Certain LFO	Uncertain LFO
• Performance ρ is fixed	• Performance ρ is fixed
 Def./Adv. chooses one 	Def./Adv. chooses one
• Take actions simultaneously	Take actions simultaneously
Paper III	Paper IV
Certain LSO	Certain LFO
• Performance ρ is fixed	• Performance ρ is uncertain
 Def./Adv. chooses one 	• Adv. chooses one, Def. chooses several
• Take actions simultaneously	Def. takes action firstly

Defender A	dversary Performance ρ
Paper I	Paper II
Certain LFO	Uncertain LFO
• Performance ρ is fixed	• Performance ρ is fixed
• Def./Adv. chooses one	Def./Adv. chooses one
• Take actions simultaneously	 Take actions simultaneously
Paper III	Paper IV
Certain LSO	Certain LFO
• Performance ρ is fixed	• Performance ρ is uncertain
 Def./Adv. chooses one 	• Adv. chooses one, Def. chooses several
• Take actions simultaneously	Def. takes action firstly

Defender A	dversary Performance ρ
Paper I	Paper II
Certain LFO	Uncertain LFO
• Performance ρ is fixed	• Performance ρ is fixed
• Def./Adv. chooses one	 Def./Adv. chooses one
• Take actions simultaneously	• Take actions simultaneously
Paper III	Paper IV
Certain LSO	Certain LFO
• Performance ρ is fixed	• Performance ρ is uncertain
• Def./Adv. chooses one	• Adv. chooses one, Def. chooses several
Take actions simultaneously	Def. takes action firstly

Problem formulation

 \bullet Undirected connected graph ${\mathcal G}$ with N nodes

$$\dot{x}_i(t) = A_i x_i(t) + b \tilde{u}_i(t),$$

$$y_i(t) = c^\top x_i(t).$$

Problem formulation

 \bullet Undirected connected graph ${\mathcal G}$ with N nodes

$$\dot{x}_i(t) = A_i x_i(t) + b \tilde{u}_i(t),$$

$$y_i(t) = c^\top x_i(t).$$

• Local performance: $\|y_{\rho}\|_{\mathcal{L}_{2}[0,T]}^{2} = \frac{1}{T}\int_{0}^{T}|y_{\rho}(t)|^{2} \mathrm{d}t$

9/27

Problem formulation

 \bullet Undirected connected graph ${\mathcal G}$ with N nodes

$$\dot{x}_i(t) = A_i x_i(t) + b \tilde{u}_i(t),$$

$$y_i(t) = c^\top x_i(t).$$

• Local performance: $\|y_{\rho}\|^2_{\mathcal{L}_2[0,T]} = \frac{1}{T} \int_0^T |y_{\rho}(t)|^2 dt$

• Healthy/attacked local controller

$$\tilde{u}_{i}(t) = \sum_{\substack{j \in \mathcal{N}_{i} \\ \text{healthy}}} \phi_{ij}(x_{i}, x_{j}) + \begin{cases} 0, & \text{if } i \neq a \\ \zeta(t), & \text{if } i \equiv a \end{cases}$$

$$\Rightarrow \text{ Closed-loop system: } \dot{x}(t) = Ax(t) + b \otimes e_{a}\zeta(t)$$

Problem formulation (Cont.)

• Closed-loop system:

$$\dot{x}(t) = Ax(t) + b \otimes \frac{e_a \zeta(t)}{\zeta(t)}, \quad x(0) = 0$$

Problem formulation (Cont.)

• Closed-loop system:

$$\dot{x}(t) = Ax(t) + b \otimes \frac{e_a \zeta(t)}{\zeta(t)}, \quad x(0) = 0$$

• The defender can choose several nodes $\mathcal{M} = \{m_1, m_2, \dots, m_{|\mathcal{M}|}\}$

$$y_{m_1}(t) = e_{m_1}^{\top} x(t), \quad y_{m_2}(t) = e_{m_2}^{\top} x(t), \quad \dots \quad y_{|\mathcal{M}|}(t) = e_{|\mathcal{M}|}^{\top} x(t).$$

• Monitor outputs such that at least

$$\|y_{m_k}\|_{\mathcal{L}_2}^2 = \frac{1}{T} \int_0^T |y_{m_k}(t)|^2 \, \mathrm{d}t > \delta_{m_k} \quad \Rightarrow \quad \text{Attack is detected}!!!$$

Problem formulation (Cont.)

• Closed-loop system:

$$\dot{x}(t) = Ax(t) + b \otimes \frac{e_a \zeta(t)}{\zeta(t)}, \quad x(0) = 0$$

• The defender can choose several nodes $\mathcal{M} = \{m_1, m_2, \dots, m_{|\mathcal{M}|}\}$

$$y_{m_1}(t) = e_{m_1}^{\top} x(t), \quad y_{m_2}(t) = e_{m_2}^{\top} x(t), \quad \dots \quad y_{|\mathcal{M}|}(t) = e_{|\mathcal{M}|}^{\top} x(t).$$

• Monitor outputs such that at least

$$\|y_{m_k}\|_{\mathcal{L}_2}^2 = \frac{1}{T} \int_0^T |y_{m_k}(t)|^2 \, \mathrm{d}t > \delta_{m_k} \quad \Rightarrow \quad \text{Attack is detected}!!!$$

• Adversary's purpose: stay stealthy

$$\|y_{m_k}\|_{\mathcal{L}_2}^2 = rac{1}{T}\int_0^T |y_{m_k}(t)|^2 \, \mathsf{d}t \le \delta_{m_k} \ \, orall m_k \in \mathcal{M}$$

⇒ Stealthy False Data Injection Attacks (Stealthy FDI Attacks)

Tung Nguyen (UU-IT-SysCon)

Security Allocation in NCSs

Boundedness of the worst-case impact of stealthy FDI attacks

⇔ Invariant zeros

Boundedness of the worst-case impact of stealthy FDI attacks

Boundedness of the worst-case impact of stealthy FDI attacks

Imaginary

Boundedness of the worst-case impact of stealthy FDI attacks

• Systems
$$\Sigma_{\rho} = (A, b \otimes e_{a}, e_{\rho}^{\top}, 0)$$
 and $\Sigma_{m_{k}} = (A, b \otimes e_{a}, e_{m_{k}}^{\top}, 0)$
 $J_{\rho}(a, \mathcal{M}) \triangleq \sup_{\substack{\boldsymbol{\zeta} \in \mathcal{L}_{2e}, \text{ zero init. state}}} \|y_{\rho}\|_{\mathcal{L}_{2}}^{2}$

s.t.
$$\|y_{m_k}\|_{\mathcal{L}_2}^2 \leq \delta_{m_k}, \ \forall m_k \in \mathcal{M}$$

Imaginary

• At least Σ_{m_k} , its λ_{m_k} (Re $[\lambda_{m_k}] > 0$) is also invariant zero of Σ_{ρ} ,

if, and only if, $J_{
ho}(a, \mathcal{M}) < \infty$

Tung Nguyen (UU-IT-SysCon)

Security Allocation in NCSs

October 13, 2023

Outline

Introduction

- 2 Security in Networked Control Systems
- 3 Problem Formulation

Contributions

- Paper I
- Paper II
- Paper III
- Paper IV

Outline

Introduction

- 2 Security in Networked Control Systems
- 3 Problem Formulation

Contributions

- Paper I
- Paper II
- Paper III
- Paper IV

Conclusion and Future Work

Paper I - Problem variation

DefenderAdversaryPerformance ρ Paper IPaper II• Certain LFO• Uncertain LFO• Performance ρ is fixed• Performance ρ is fixed• Def./Adv. chooses one• Def./Adv. chooses one• Take actions simultaneously• Take actions simultaneouslyPaper IIIPaper IIC• Certain LSO• Certain LFO• Performance ρ is fixed• Certain LFO• Def./Adv. chooses one• Certain LFO• Take actions simultaneously• Certain LFO• Take actions simultaneously• Oef. takes one, Def. chooses several• Take actions simultaneously• Def. takes action first		\bigcirc		
Paper IPaper II• Certain LFO• Uncertain LFO• Performance ρ is fixed• Def./Adv. chooses one• Def./Adv. chooses one• Def./Adv. chooses one• Take actions simultaneously• Def./Adv. chooses onePaper III• Certain LSO• Performance ρ is fixed• Certain LFO• Performance ρ is fixed• Certain LFO• Def./Adv. chooses one• Certain LFO• Take actions simultaneously• Offer Comparison of the section of the s		Defender A	Adver	Performance ρ
 Certain LFO Performance ρ is fixed Def./Adv. chooses one Take actions simultaneously Paper III Certain LSO Performance ρ is fixed Def./Adv. chooses one Take actions simultaneously Certain LSO Performance ρ is fixed Def./Adv. chooses one Take actions simultaneously Certain LSO Performance ρ is fixed Def./Adv. chooses one Take actions simultaneously Def. takes action first 		Paper I		Paper II
 Performance ρ is fixed Def./Adv. chooses one Take actions simultaneously Paper III Certain LSO Performance ρ is fixed Def./Adv. chooses one Certain LSO Performance ρ is fixed Def./Adv. chooses one Adv. chooses one, Def. chooses severa Take actions simultaneously 	•	Certain LFO	•	Uncertain LFO
 Def./Adv. chooses one Take actions simultaneously Paper III Certain LSO Performance ρ is fixed Def./Adv. chooses one Adv. chooses one, Def. chooses severa Take actions simultaneously 	•	Performance ρ is fixed	•	Performance ρ is fixed
 Take actions simultaneously Take actions simultaneously Paper III Certain LSO Performance ρ is fixed Def./Adv. chooses one Take actions simultaneously Def. takes action first 	٠	Def./Adv. chooses one	•	Def./Adv. chooses one
Paper IIIPaper IV• Certain LSO• Certain LFO• Performance ρ is fixed• Performance ρ is uncertain• Def./Adv. chooses one• Adv. chooses one, Def. chooses severa• Take actions simultaneously• Def. takes action first	•	Take actions simultaneously	•	Take actions simultaneously
 Certain LSO Performance ρ is fixed Def./Adv. chooses one Take actions simultaneously Certain LFO Performance ρ is uncertain Adv. chooses one, Def. chooses severa Def. takes action first 		Paper III		Paper IV
 Performance ρ is fixed Def./Adv. chooses one Take actions simultaneously Performance ρ is uncertain Adv. chooses one, Def. chooses severa Def. takes action first 	•	Certain LSO	•	Certain LFO
 Def./Adv. chooses one Take actions simultaneously Adv. chooses one, Def. chooses several Def. takes action first 	•	Performance ρ is fixed	•	Performance $ ho$ is uncertain
Take actions simultaneously Def. takes action first	•	Def./Adv. chooses one	•	Adv. chooses one, Def. chooses several
	•	Take actions simultaneously	•	Def. takes action first

 \bullet Unweighted graph ${\mathcal G}$ with N vertices, certain Laplacian matrix L

$$\begin{split} \dot{x}(t) &= -Lx(t) + e_a \zeta(t), \\ y_\rho(t) &= e_\rho^\top x(t), \\ y_m(t) &= e_m^\top x(t) \quad (\mathcal{M} = \{m\}). \end{split}$$

• Worst-case impact of stealthy FDI attacks

$$\begin{split} J_{\rho}(a,m) &\triangleq \sup_{\substack{\boldsymbol{\zeta} \in \mathcal{L}_{2e}, \text{ zero init. state}}} \|y_{\rho}\|_{\mathcal{L}_{2}}^{2} \\ \text{s.t.} \quad \|y_{m}\|_{\mathcal{L}_{2}}^{2} \leq \delta_{m} \end{split}$$

 \bullet Unweighted graph ${\mathcal G}$ with N vertices, certain Laplacian matrix L

$$\begin{split} \dot{x}(t) &= -Lx(t) + e_a \zeta(t), \\ y_\rho(t) &= e_\rho^\top x(t), \\ y_m(t) &= e_m^\top x(t) \quad (\mathcal{M} = \{m\}). \end{split}$$

• Worst-case impact of stealthy FDI attacks

$$\begin{split} J_{\rho}(a,m) &\triangleq \sup_{\substack{\boldsymbol{\zeta} \in \mathcal{L}_{2e}, \text{ zero init. state}}} \|y_{\rho}\|_{\mathcal{L}_{2}}^{2} \\ \text{s.t.} \quad \|y_{m}\|_{\mathcal{L}_{2}}^{2} \leq \delta_{m} \end{split}$$

No finite unstable invariant zeros¹

1. J. A. Torres & S. Roy, "Graph-theoretic analysis of network input-output processes:

Zero structure and its implications on remote feedback control", Automatica, 2015

Tung Nguyen (UU-IT-SysCon)

Security Allocation in NCSs

 \bullet Unweighted graph ${\mathcal G}$ with N vertices, certain Laplacian matrix L

$$\begin{split} \dot{x}(t) &= -Lx(t) + e_a \zeta(t), \\ y_\rho(t) &= e_\rho^\top x(t), \\ y_m(t) &= e_m^\top x(t) \quad (\mathcal{M} = \{m\}). \end{split}$$

• Worst-case impact of stealthy FDI attacks

$$\begin{split} J_{\rho}(a,m) &\triangleq \sup_{\substack{\boldsymbol{\zeta} \in \mathcal{L}_{2e}, \text{ zero init. state}}} \|y_{\rho}\|_{\mathcal{L}_{2}}^{2} \\ \text{s.t.} \quad \|y_{m}\|_{\mathcal{L}_{2}}^{2} \leq \delta_{m} \end{split}$$

No finite unstable invariant zeros¹

Challenge

Infinite invariant zeros

- 1. J. A. Torres & S. Roy, "Graph-theoretic analysis of network input-output processes:
- Zero structure and its implications on remote feedback control", Automatica, 2015

Tung Nguyen (UU-IT-SysCon)

Security Allocation in NCSs

October 13, 2023

 Σ_m : output at m, relative degree $r_{(m,a)}$ Σ_{ρ} : output at ρ , relative degree $r_{(\rho,a)}$

 Σ_m : output at m, relative degree $r_{(m,a)}$ Σ_{ρ} : output at ρ , relative degree $r_{(\rho,a)}$

inf. inv. zero = relative degree

 Σ_m : output at m, relative degree $r_{(m,a)}$ Σ_{ρ} : output at ρ , relative degree $r_{(\rho,a)}$

inf. inv. zero = relative degree

Theorem 1

 $\begin{array}{l} \# \text{ inf. inv. zero of } \Sigma_m \leq \# \text{ inf. inv. zero of } \Sigma_\rho \\ \Leftrightarrow r_{(m,a)} \leq r_{(\rho,a)} \Leftrightarrow J_\rho(a,m) < \infty \end{array}$

 Σ_m : output at m, relative degree $r_{(m,a)}$ Σ_{ρ} : output at ρ , relative degree $r_{(\rho,a)}$

inf. inv. zero = relative degree

Theorem 1

 $\begin{array}{l} \# \text{ inf. inv. zero of } \Sigma_m \leq \# \text{ inf. inv. zero of } \Sigma_\rho \\ \Leftrightarrow r_{(m, a)} \leq r_{(\rho, a)} \Leftrightarrow J_\rho(a, m) < \infty \end{array}$

 Σ_m : output at m, relative degree $r_{(m,a)}$ Σ_{ρ} : output at ρ , relative degree $r_{(\rho,a)}$

inf. inv. zero = relative degree

Theorem 1

 $\begin{array}{l} \# \text{ inf. inv. zero of } \Sigma_m \leq \# \text{ inf. inv. zero of } \Sigma_\rho \\ \Leftrightarrow r_{(m, a)} \leq r_{(\rho, a)} \Leftrightarrow J_\rho(a, m) < \infty \end{array}$

Tung Nguyen (UU-IT-SysCon)

Security Allocation in NCSs

Outline

Introduction

- 2 Security in Networked Control Systems
- 3 Problem Formulation

Contributions

- Paper I
- Paper II
- Paper III
- Paper IV

Conclusion and Future Work

Paper II - Problem variation

Defender A	dversary Performance ρ
Paper I	Paper II
Certain LFO	Uncertain LFO
• Performance ρ is fixed	• Performance ρ is fixed
 Def./Adv. chooses one 	• Def./Adv. chooses one
• Take actions simultaneously	 Take actions simultaneously
Paper III	Paper IV
Certain LSO	Certain LFO
• Performance ρ is fixed	• Performance ρ is uncertain
 Def./Adv. chooses one 	• Adv. chooses one, Def. chooses several
• Take actions simultaneously	• Def. takes action first

• Uncertain weighted graph ${\mathcal G}$ with N vertices, uncertain L^Δ

$$\begin{split} \dot{x}^{\Delta}(t) &= -L^{\Delta} x^{\Delta}(t) + e_a \zeta(t), \\ y^{\Delta}_{\rho}(t) &= e^{\top}_{\rho} x^{\Delta}(t), \\ y^{\Delta}_m(t) &= e^{\top}_m x^{\Delta}(t) \quad (\mathcal{M} = \{m\}). \end{split}$$

$$\begin{split} L^{\Delta} &= \bar{L} + \Delta \\ \Delta &\in \Omega \end{split}$$

Paper II

Challenges

• Uncertain weighted graph ${\mathcal G}$ with N vertices, uncertain L^Δ

$$\begin{split} \dot{x}^{\Delta}(t) &= -L^{\Delta} x^{\Delta}(t) + e_{a} \zeta(t), \\ y^{\Delta}_{\rho}(t) &= e^{\top}_{\rho} x^{\Delta}(t), \\ y^{\Delta}_{m}(t) &= e^{\top}_{m} x^{\Delta}(t) \quad (\mathcal{M} = \{m\}). \end{split}$$

$$\begin{split} J^{\Delta}_{\rho}(\boldsymbol{a},m) &\triangleq \sup_{\boldsymbol{\zeta} \in \mathcal{L}_{2e}, \text{ zero init. state}} \frac{\left\| y^{\Delta}_{\rho} \right\|_{\mathcal{L}_{2}}^{2}}{\text{s.t.}} \\ \text{s.t.} \quad \left\| y^{\Delta}_{m} \right\|_{\mathcal{L}_{2}}^{2} \leq \delta_{m} \end{split}$$

• Uncertain weighted graph ${\mathcal G}$ with N vertices, uncertain L^Δ

$$\begin{split} \dot{x}^{\Delta}(t) &= -L^{\Delta} x^{\Delta}(t) + e_a \zeta(t), \\ y^{\Delta}_{\rho}(t) &= e_{\rho}^{\top} x^{\Delta}(t), \\ y^{\Delta}_{m}(t) &= e_m^{\top} x^{\Delta}(t) \quad (\mathcal{M} = \{m\}). \end{split}$$

$$J^{\Delta}_{\rho}(\boldsymbol{a},m) \triangleq \sup_{\boldsymbol{\zeta} \in \mathcal{L}_{2e}, \text{ zero init. state}} \left\| y^{\Delta}_{\rho} \right\|_{\mathcal{L}_{2}}^{2}$$
s.t.
$$\left\| y^{\Delta}_{m} \right\|_{\mathcal{L}_{2}}^{2} \leq \delta_{m}$$

Challenges

- 1) Finite unstable inv. zeros¹
- 2) Infinite inv. zeros
- 3) Evaluate worst-case attack impact

1. J. A. Torres & S. Roy, "Graph-theoretic analysis of network input-output processes:

Zero structure and its implications on remote feedback control", Automatica, 2015

Tung Nguyen (UU-IT-SysCon)

Security Allocation in NCSs

o

• Uncertain weighted graph ${\mathcal G}$ with N vertices, uncertain L^Δ

$$\begin{split} \dot{x}^{\Delta}(t) &= -L^{\Delta} x^{\Delta}(t) + \boldsymbol{e}_{\boldsymbol{a}} \boldsymbol{\zeta}(t), \\ y^{\Delta}_{\rho}(t) &= \boldsymbol{e}_{\rho}^{\top} x^{\Delta}(t), \\ y^{\Delta}_{m}(t) &= \boldsymbol{e}_{m}^{\top} x^{\Delta}(t) \quad (\mathcal{M} = \{m\}). \end{split}$$

$$J^{\Delta}_{\rho}(a,m) \triangleq \sup_{\boldsymbol{\zeta} \in \mathcal{L}_{2e}, \text{ zero init. state}} \|y^{\Delta}_{\rho}\|^{2}_{\mathcal{L}_{2}}$$

s.t. $\|y^{\Delta}_{m}\|^{2}_{\mathcal{L}_{2}} \leq \delta_{m}$

Challenges

1) Finite unstable inv. zeros¹

2) Infinite inv. zeros

3) Evaluate worst-case attack impact

1. J. A. Torres & S. Roy, "Graph-theoretic analysis of network input-output processes:

Zero structure and its implications on remote feedback control", Automatica, 2015

Tung Nguyen (UU-IT-SysCon)

Security Allocation in NCSs

o

Paper II

Value-at-Risk

$$\mathcal{J}_{
ho}(a,m) = \mathsf{VaR}_{eta,\Omega} \Big[\sup_{\substack{\boldsymbol{\zeta} \in \mathcal{L}_{2e}}} J_{
ho}(a,m;\Delta,\boldsymbol{\zeta}) \Big]$$

Value-at-Risk

$$\mathcal{J}_{
ho}(a,m) = \mathsf{VaR}_{eta,\Omega} \Big[\sup_{\boldsymbol{\zeta} \in \mathcal{L}_{2e}} J_{
ho}(a,m;\Delta,\boldsymbol{\zeta}) \Big]$$

Paper II

Value-at-Risk

$$\mathcal{J}_{
ho}(\pmb{a},\pmb{m}) = \mathsf{VaR}_{eta,\Omega} \Big[\sup_{\pmb{\zeta} \in \mathcal{L}_{2e}} J_{
ho}(\pmb{a},\pmb{m};\Delta,\pmb{\zeta}) \Big]$$

Theorem 1 & Lemma 2

 $\begin{array}{l} M_1 \text{ values from } \Omega\\ \text{Evaluate } \left\lceil M_1(1-\beta_1) \right\rceil \text{ values}\\ \text{with } \epsilon \text{ accuracy}\\ M_1 \geq \frac{1}{2\epsilon_1^2} \log \frac{2}{\beta_1}\\ \text{E.g., } \epsilon_1 = 0.06, \ \beta_1 = 0.08,\\ M_1 \geq 450 \Rightarrow 414 \text{ values} \end{array}$

Outline

Introduction

- 2 Security in Networked Control Systems
- 3 Problem Formulation

Contributions

- Paper I
- Paper II
- Paper III
- Paper IV

Conclusion and Future Work

Paper III - Problem variation

Defender A	dversary Performance ρ
 Paper I Certain LFO Performance ρ is fixed Def./Adv. chooses one Take actions simultaneously 	 Paper II Uncertain LFO Performance ρ is fixed Def./Adv. chooses one Take actions simultaneously
Paper III • Certain LSO • Performance ρ is fixed • Def./Adv. chooses one • Take actions simultaneously	Paper IV • Certain LFO • Performance ρ is uncertain • Adv. chooses one, Def. chooses several • Def. takes action first

• Main focus: Power networks by linearized swing equations

$$m_i \ddot{p}_i(t) + h_i \dot{p}_i(t) = \sum_{j \in \mathcal{N}_i} \ell_{ij} \left(p_i(t) - p_j(t) \right) + \tilde{u}_i(t),$$

• Closed-loop system

$$\begin{split} \dot{x}(t) &= Ax(t) + e_{a}\zeta(t), \\ y_{i}(t) &= C_{i}x(t), \quad \forall i \in \mathcal{V}, \\ y_{\rho}(t) &= C_{\rho}x(t), \end{split}$$

• Local performance: $\|y_{\rho}\|_{\mathcal{L}_{2}[0,T]}^{2} = \frac{1}{T}\int_{0}^{T}|y_{\rho}(t)|^{2} dt$

• Main focus: Power networks by linearized swing equations

$$m_i \ddot{p}_i(t) + h_i \dot{p}_i(t) = \sum_{j \in \mathcal{N}_i} \ell_{ij} \left(p_i(t) - p_j(t) \right) + \tilde{u}_i(t),$$

• Closed-loop system

$$\begin{split} \dot{x}(t) &= Ax(t) + e_{a}\zeta(t), \\ y_{i}(t) &= C_{i}x(t), \quad \forall i \in \mathcal{V}, \\ y_{\rho}(t) &= C_{\rho}x(t), \end{split}$$

- Local performance: $\|y_{\rho}\|_{\mathcal{L}_{2}[0,T]}^{2} = \frac{1}{T}\int_{0}^{T}|y_{\rho}(t)|^{2} dt$
- At node $m \in \mathcal{V}_{-\rho}$ where (A, C_m) is detectable,

$$\dot{\hat{x}}_m(t) = A\hat{x}_m(t) + K_m\eta_m(t), \quad \hat{x}_m(0) = 0, \eta_m(t) = y_m(t) - C_m\hat{x}_d(t),$$

Detector

• Main focus: Power networks by linearized swing equations

$$m_i \ddot{p}_i(t) + h_i \dot{p}_i(t) = \sum_{j \in \mathcal{N}_i} \ell_{ij} \left(p_i(t) - p_j(t) \right) + \tilde{u}_i(t),$$

• Closed-loop system

$$\begin{split} \dot{x}(t) &= Ax(t) + e_{a}\zeta(t), \\ y_{i}(t) &= C_{i}x(t), \quad \forall i \in \mathcal{V}, \\ y_{\rho}(t) &= C_{\rho}x(t), \end{split}$$

- Local performance: $\|y_{\rho}\|_{\mathcal{L}_{2}[0,T]}^{2} = \frac{1}{T}\int_{0}^{T}|y_{\rho}(t)|^{2} dt$
- At node $m \in \mathcal{V}_{-\rho}$ where (A, C_m) is detectable,

$$\dot{x}_m(t) = A\hat{x}_m(t) + K_m\eta_m(t), \quad \hat{x}_m(0) = 0, \eta_m(t) = y_m(t) - C_m\hat{x}_d(t),$$

• The defender monitors $\|\eta_m\|_{\mathcal{L}_2[0,T]}^2 = rac{1}{T}\int_0^T |\eta_m(t)|^2 \,\mathrm{d}t$

Detector

• Main focus: Power networks by linearized swing equations

$$m_i \ddot{p}_i(t) + h_i \dot{p}_i(t) = \sum_{j \in \mathcal{N}_i} \ell_{ij} \left(p_i(t) - p_j(t) \right) + \tilde{\boldsymbol{u}}_i(t),$$

Closed-loop system

$$\begin{split} \dot{x}(t) &= Ax(t) + e_{a}\zeta(t), \\ y_{i}(t) &= C_{i}x(t), \quad \forall i \in \mathcal{V}, \\ y_{\rho}(t) &= C_{\rho}x(t), \end{split}$$

Challenges

Finite unstable inv. zeros
 Infinite inv. zeros

- Local performance: $\|y_{\rho}\|_{\mathcal{L}_2[0,T]}^2 = \frac{1}{T} \int_0^T |y_{\rho}(t)|^2 dt$
- At node $m \in \mathcal{V}_{-\rho}$ where (A, C_m) is detectable,

$$\dot{\hat{x}}_m(t) = A\hat{x}_m(t) + K_m\eta_m(t), \quad \hat{x}_m(0) = 0, \eta_m(t) = y_m(t) - C_m\hat{x}_d(t),$$

• The defender monitors $\|\eta_m\|_{\mathcal{L}_2[0,T]}^2 = rac{1}{T}\int_0^T |\eta_m(t)|^2 \,\mathrm{d}t$

Detector
- The worst-case impact of stealthy FDI attacks $J_{\rho}(a,m) \triangleq \sup_{\substack{\zeta \in \mathcal{L}_{2e}, \text{ zero init. states}}} \|y_{\rho}\|_{\mathcal{L}_{2}}^{2}$ s.t. $\|\eta_{m}\|_{\mathcal{L}_{2}}^{2} \leq \delta$
- Systems $\Sigma_{\rho} = (A, e_a, C_{\rho}, 0)$ and $\Sigma_m = (A, e_a, C_m, 0)$
- Denote $r_{(\rho, a)}$ and $r_{(m, a)}$ as the relative degrees of $\Sigma_{
 ho}$ and Σ_m

• The worst-case impact of stealthy FDI attacks $J_{\rho}(a,m) \triangleq \sup_{\substack{\zeta \in \mathcal{L}_{2e}, \text{ zero init. states}}} \|y_{\rho}\|_{\mathcal{L}_{2}}^{2}$

s.t. $\|\eta_m\|_{\mathcal{L}_2}^2 \leq \delta$

- Systems $\Sigma_{\rho} = (A, e_a, C_{\rho}, 0)$ and $\Sigma_m = (A, e_a, C_m, 0)$
- Denote $r_{(\rho, a)}$ and $r_{(m, a)}$ as the relative degrees of $\Sigma_{
 ho}$ and Σ_m

Lemma 3 (choice of parameters)

Finite unstable invariant zeros λ_m of Σ_m can be excluded by proper local control parameters. Then, $J_{\rho}(a,m) < \infty$.

• The worst-case impact of stealthy FDI attacks $J_{\rho}(a,m) \triangleq \sup_{\substack{\zeta \in \mathcal{L}_{2e}, \text{ zero init. states}}} \|y_{\rho}\|_{\mathcal{L}_{2}}^{2}$

s.t. $\|\eta_m\|_{\mathcal{L}_2}^2 \leq \delta$

- Systems $\Sigma_{\rho} = (A, e_a, C_{\rho}, 0)$ and $\Sigma_m = (A, e_a, C_m, 0)$
- Denote $r_{(\rho, a)}$ and $r_{(m, a)}$ as the relative degrees of $\Sigma_{
 ho}$ and Σ_m

Lemma 3 (choice of parameters)

Finite unstable invariant zeros λ_m of Σ_m can be excluded by proper local control parameters. Then, $J_{\rho}(a,m) < \infty$.

Theorem 3.1 (relative degree condition)

$$r_{(\boldsymbol{m},\boldsymbol{a})} \leq r_{(\boldsymbol{\rho},\boldsymbol{a})}$$

$$\Rightarrow \quad J_{\rho}(\boldsymbol{a},\boldsymbol{m}) < \infty$$

Tung Nguyen (UU-IT-SysCon)

Security Allocation in NCSs

21/27

Outline

Introduction

- 2 Security in Networked Control Systems
- 3 Problem Formulation

Contributions

- Paper I
- Paper II
- Paper III
- Paper IV

Paper IV - Problem variation

	\bigcirc	2	
	Defender A	Adver	Sary Performance ρ
	Paper I		Paper II
•	Certain LFO	•	Uncertain LFO
•	Performance ρ is fixed	•	Performance ρ is fixed
•	Def./Adv. chooses one	•	Def./Adv. chooses one
•	Take actions simultaneously	•	Take actions simultaneously
	Paper III		Paper IV
•	Certain LSO	•	Certain LFO
•	Performance ρ is fixed	•	Performance ρ is uncertain
•	Def./Adv. chooses one	•	Adv. chooses one, Def. chooses several
•	Take actions simultaneously	•	Def. takes action first

 \bullet Unweighted graph ${\mathcal G}$ with N vertices, certain Laplacian matrix L

$$\dot{x}(t) = -Lx(t) + e_a \zeta(t),$$

$$y_{\rho}(t) = e_{\rho}^{\top} x(t),$$

$$y_{m_k}(t) = e_{m_k}^{\top} x(t) \left(\mathcal{M} = \{m_1, m_2, \dots, m_{|\mathcal{M}|}\} \right).$$

$$\begin{split} J_{\rho}(a,\mathcal{M}) &\triangleq \sup_{\substack{\boldsymbol{\zeta} \in \mathcal{L}_{2e}, \text{ zero init. state}}} \|y_{\rho}\|_{\mathcal{L}_{2}}^{2} \\ \text{s.t.} \quad \|y_{m_{k}}\|_{\mathcal{L}_{2}}^{2} \leq \delta_{m_{k}} \ \, \forall m_{k} \in \mathcal{M} \end{split}$$

 \bullet Unweighted graph ${\mathcal G}$ with N vertices, certain Laplacian matrix L

$$\dot{x}(t) = -Lx(t) + e_a \zeta(t),$$

$$y_{\rho}(t) = e_{\rho}^{\top} x(t),$$

$$y_{m_k}(t) = e_{m_k}^{\top} x(t) \left(\mathcal{M} = \{m_1, m_2, \dots, m_{|\mathcal{M}|}\} \right).$$

$$\begin{split} J_{\rho}(a,\mathcal{M}) &\triangleq \sup_{\substack{\zeta \in \mathcal{L}_{2e}, \text{ zero init. state}}} \|y_{\rho}\|_{\mathcal{L}_{2}}^{2} \\ \text{s.t.} \quad \|y_{m_{k}}\|_{\mathcal{L}_{2}}^{2} \leq \delta_{m_{k}} \quad \forall m_{k} \in \mathcal{M} \\ Q(a,\mathcal{M}) &\triangleq \sum_{\rho \in \mathcal{V}_{-a}} \pi^{a}(\rho|a) J_{\rho}(a,\mathcal{M}) \end{split}$$

 \bullet Unweighted graph ${\mathcal G}$ with N vertices, certain Laplacian matrix L

$$\dot{x}(t) = -Lx(t) + e_a \zeta(t), y_{\rho}(t) = e_{\rho}^{\top} x(t), y_{m_k}(t) = e_{m_k}^{\top} x(t) (\mathcal{M} = \{m_1, m_2, \dots, m_{|\mathcal{M}|}\}).$$

$$J_{\rho}(a, \mathcal{M}) \triangleq \sup_{\substack{\zeta \in \mathcal{L}_{2e}, \text{ zero init. state}}} \|y_{\rho}\|_{\mathcal{L}_{2}}^{2}$$
s.t.
$$\|y_{m_{k}}\|_{\mathcal{L}_{2}}^{2} \leq \delta_{m_{k}} \quad \forall m_{k} \in \mathcal{M}$$

$$Q(a, \mathcal{M}) \triangleq \sum_{\rho \in \mathcal{V}_{-a}} \pi^{a}(\rho|a) J_{\rho}(a, \mathcal{M})$$

$$R(a, \mathcal{M}) \triangleq \mathfrak{c}(|\mathcal{M}|) + \sum_{\rho \in \mathcal{V}_{-a}} \pi^{d}(\rho|a) J_{\rho}(a, \mathcal{M})$$
Tung Nguyen (UU-IT-SysCon) Security Allocation in NCSs October 13, 2023

 \bullet Unweighted graph ${\mathcal G}$ with N vertices, certain Laplacian matrix L

$$\dot{x}(t) = -Lx(t) + e_a \zeta(t),$$

$$y_{\rho}(t) = e_{\rho}^{\top} x(t),$$

$$y_{m_k}(t) = e_{m_k}^{\top} x(t) \left(\mathcal{M} = \{m_1, m_2, \dots, m_{|\mathcal{M}|}\} \right).$$

$$J_{\rho}(a, \mathcal{M}) \triangleq \sup_{\boldsymbol{\zeta} \in \mathcal{L}_{2e}, \text{ zero init. state}} \|y_{\rho}\|_{\mathcal{L}_{2}}^{2}$$
s.t.
$$\|y_{m_{k}}\|_{\mathcal{L}_{2}}^{2} \leq \delta_{m_{k}} \quad \forall m_{k} \in \mathcal{M}$$

$$Q(a, \mathcal{M}) \triangleq \sum_{\rho \in \mathcal{V}_{-a}} \pi^{a}(\rho|a) J_{\rho}(a, \mathcal{M})$$

$$R(a, \mathcal{M}) \triangleq \mathfrak{c}(|\mathcal{M}|) + \sum_{\rho \in \mathcal{V}_{-a}} \pi^{d}(\rho|a) J_{\rho}(a, \mathcal{M})$$

$$Infinite unstable inv. zeros$$

$$(\mathcal{W} = \mathbf{13}, 2023 \qquad 23/27$$

 \bullet Unweighted graph ${\mathcal G}$ with N vertices, certain Laplacian matrix L

$$\dot{x}(t) = -Lx(t) + e_a \zeta(t),$$

$$y_{\rho}(t) = e_{\rho}^{\top} x(t),$$

$$y_{m_k}(t) = e_{m_k}^{\top} x(t) \left(\mathcal{M} = \{m_1, m_2, \dots, m_{|\mathcal{M}|}\} \right).$$

$$J_{\rho}(a, \mathcal{M}) \triangleq \sup_{\zeta \in \mathcal{L}_{2e}, \text{ zero init. state}} \|y_{\rho}\|_{\mathcal{L}_{2}}^{2}$$
s.t.
$$\|y_{m_{k}}\|_{\mathcal{L}_{2}}^{2} \leq \delta_{m_{k}} \quad \forall m_{k} \in \mathcal{M}$$

$$Q(a, \mathcal{M}) \triangleq \sum_{\rho \in \mathcal{V}_{-a}} \pi^{a}(\rho|a) J_{\rho}(a, \mathcal{M})$$

$$R(a, \mathcal{M}) \triangleq \mathfrak{c}(|\mathcal{M}|) + \sum_{\rho \in \mathcal{V}_{-a}} \pi^{d}(\rho|a) J_{\rho}(a, \mathcal{M})$$
Challenges
1) Finite unstable inv. zeros
2) Infinite inv. zeros
2) Infinite inv. zeros
2) Contact 13, 2023
23/27

Players' strategies Defender strategy $\mathcal{M}^{\star} = \arg\min_{\mathcal{M}\subset\mathbb{D}} \text{ Defense } \operatorname{cost}|_{a^{\star}(\mathcal{M})}$ $a^{\star}(\mathcal{M}) = \arg\max_{a\in\mathbb{A}} \text{ Defense } \operatorname{cost}$

Players' strategies

Defender strategy

$$\mathcal{M}^{\star} = \arg\min_{\mathcal{M} \subset \mathbb{D}} |\mathsf{Defense cost}|_{a^{\star}(\mathcal{M})}$$

 $a^{\star}(\mathcal{M}) = rg\max_{a \in \mathbb{A}}$ Defense cost

Adversary response

$$a^{\star} = \arg \max_{a \in \mathbb{A}} \text{ Attack impact}|_{\mathcal{M}^{\star}}$$

Players' strategies

Defender strategy

$$\mathcal{M}^{\star} = \arg\min_{\mathcal{M} \subset \mathbb{D}} |\mathsf{Defense cost}|_{a^{\star}(\mathcal{M})}$$

 $a^{\star}(\mathcal{M}) = rg\max_{a \in \mathbb{A}}$ Defense cost

Adversary response

$$a^{\star} = \arg \max_{a \in \mathbb{A}} \text{ Attack impact}|_{\mathcal{M}^{\star}}$$

 \Rightarrow

Players' strategies

Defender strategy

$$\mathcal{M}^{\star} = \arg\min_{\mathcal{M} \subset \mathbb{D}} \mathsf{Defense cost}|_{a^{\star}(\mathcal{M})}$$

 $a^{\star}(\mathcal{M}) = rg\max_{a \in \mathbb{A}}$ Defense cost

Adversary response

$$a^{\star} = \arg \max_{a \in \mathbb{A}} \mathsf{Attack impact}|_{\mathcal{M}^{\star}}$$

Combinatorial optimization problem

Computational burden

Defender strategy

$$\mathcal{M}^{\star} = \arg\min_{\mathcal{M}\subset\mathbb{D}} \mathsf{Defense cost}|_{a^{\star}(\mathcal{M})}$$

 $a^{\star}(\mathcal{M}) = rg\max_{a \in \mathbb{A}}$ Defense cost

Adversary response

$$a^{\star} = \arg \max_{a \in \mathbb{A}} \mathsf{Attack impact}|_{\mathcal{M}^{\star}}$$

Combinatorial optimization problem

Computational burden

Shrink defender action space $\mathcal{M} \subset \mathbb{D} \subset \mathcal{V} \quad] \Rightarrow$

Efficiently allocate defense resources

 $\mathbb D$ s.t. defense cost/attack impact $<\infty$

Paper IV

Players' strategies

Defender strategy

$$\mathcal{M}^{\star} = \arg\min_{\mathcal{M}\subset\mathbb{D}} |\mathsf{Defense cost}|_{a^{\star}(\mathcal{M})}$$

 $a^{\star}(\mathcal{M}) = rg\max_{a \in \mathbb{A}}$ Defense cost

Adversary response

$$a^{\star} = \arg \max_{a \in \mathbb{A}} \mathsf{Attack impact}|_{\mathcal{M}^{\star}}$$

Combinatorial optimization problem

 \mathbb{D} s.t. defense cost/attack impact $< \infty$

Computational burden

Shrink defender action space $\mathcal{M} \subset \mathbb{D} \subset \mathcal{V} \Rightarrow$

Efficiently allocate defense resources

Tung Nguyen (UU-IT-SysCon)

Security Allocation in NCSs

 \leftarrow

Paper IV

Paper IV

Outline

Introduction

- 2 Security in Networked Control Systems
- 3 Problem Formulation

4 Contributions

- Paper I
- Paper II
- Paper III
- Paper IV

Conclusion and Future Work

This Licentiate thesis has

- considered several types of NCSs under attacks
- ② intensively investigated the worst-case impact of stealthy FDI attacks
- I found system- and graph-theoretic conditions
- assisted the defender in allocating defense resources

Conclusion and Future Work

This Licentiate thesis has

- considered several types of NCSs under attacks
- Intensively investigated the worst-case impact of stealthy FDI attacks
- I found system- and graph-theoretic conditions
- assisted the defender in allocating defense resources

Toward the PhD thesis, it will be extended to

- overcome combinatorial optimization problem
- e consider uncompleted information
- Onsider multiple adversaries
- assist the defender in designing detectors
- 5

Performance ρ

Paper I	Paper II
Certain LFO	Uncertain LFO
• Performance ρ is fixed	• Performance ρ is fixed
• Def./Adv. chooses one	• Def./Adv. chooses one
• Take actions simultaneously	 Take actions simultaneously
Paper III	Paper IV
Paper IIICertain LSO	Paper IV Certain LFO
 Paper III Certain LSO Performance ρ is fixed 	 Paper IV Certain LFO Performance ρ is uncertain
 Paper III Certain LSO Performance ρ is fixed Def./Adv. chooses one 	Paper IV • Certain LFO • Performance ρ is uncertain • Adv. chooses one, Def. chooses several
 Paper III Certain LSO Performance ρ is fixed Def./Adv. chooses one Take actions simultaneously 	 Paper IV Certain LFO Performance ρ is uncertain Adv. chooses one, Def. chooses several Def. takes action first

Thanks for listening!!!

Security Allocation in NCSs